1
|
Wang W, Bi Z, Liu Y, Xia X, Qian J, Tan Y, Zhu Y, Song S, Yan L. Development of a monoclonal antibody recognizing novel linear neutralizing epitope on H protein of canine distemper virus vaccine strains (America-1 genotype). Int J Biol Macromol 2023; 246:125584. [PMID: 37391002 DOI: 10.1016/j.ijbiomac.2023.125584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
Canine distemper virus (CDV) is an economically important virus responsible for canine distemper (CD), a highly contagious disease that afflicts various animal species worldwide. The hemagglutinin (H) protein is the major neutralizing target of virus. Therefore, it is often considered as immunogen to prepare neutralizing antibodies. The accurate identification of neutralizing epitope will provide important antigenic information and extend the knowledge of mechanisms of virus neutralization. In this study, we generated a neutralizing monoclonal antibody (mAb) 4C6 against CDV H protein, and defined the minimal linear epitope 238DIEREFDT245, which was highly conserved in America-1 genotype of CDV strains (vaccines). The mAb 4C6 could not react with a CDV strain that had two substitutions of D238Y and R241G in the epitope, which appeared in most CDV strains of the other genotypes. Besides, a few different amino acid mutations in the epitope were also included. Collectively, the epitope 238DIEREFDT245 was variable in the other genotypes of CDV strains. The epitope 238DIEREFDT245 was exposed to the surface of CDV H protein, showing good antigenicity. These data will provide insights into structure, function and antigenicity of H protein and lay the foundation for the development of diagnostic technologies and vaccine design for CDV.
Collapse
Affiliation(s)
- Wenjie Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhenwei Bi
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, Jiangsu 225300, China.
| | - Yakun Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Xingxia Xia
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Jing Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Yeping Tan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Yumei Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Liping Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
2
|
Wang B, Li S, Qiao Y, Fu Y, Nie J, Jiang S, Yao X, Pan Y, Zhao L, Wu C, Shi Y, Yin Y, Shan Y. Self-assembling ferritin nanoparticles coupled with linear sequences from canine distemper virus haemagglutinin protein elicit robust immune responses. J Nanobiotechnology 2022; 20:32. [PMID: 35012571 PMCID: PMC8744384 DOI: 10.1186/s12951-021-01229-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/24/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Canine distemper virus (CDV), which is highly infectious, has caused outbreaks of varying scales in domestic and wild animals worldwide, so the development of a high-efficiency vaccine has broad application prospects. Currently, the commercial vaccine of CDV is an attenuated vaccine, which has the disadvantages of a complex preparation process, high cost and safety risk. It is necessary to develop a safe and effective CDV vaccine that is easy to produce on a large scale. In this study, sequences of CDV haemagglutinin (HA) from the Yanaka strain were aligned, and three potential linear sequences, termed YaH3, YaH4, and YaH5, were collected. To increase the immunogenicity of the epitopes, ferritin was employed as a self-assembling nanoparticle element. The ferritin-coupled forms were termed YaH3F, YaH4F, and YaH5F, respectively. A full-length HA sequence coupled with ferritin was also constructed as a DNA vaccine to compare the immunogenicity of nanoparticles in prokaryotic expression. RESULT The self-assembly morphology of the proteins from prokaryotic expression was verified by transmission electron microscopy. All the proteins self-assembled into nanoparticles. The expression of the DNA vaccine YaHF in HEK-293T cells was also confirmed in vitro. After subcutaneous injection of epitope nanoparticles or intramuscular injection of DNA YaHF, all vaccines induced strong serum titres, and long-term potency of antibodies in serum could be detected after 84 days. Strong anti-CDV neutralizing activities were observed in both the YaH4F group and YaHF group. According to antibody typing and cytokine detection, YaH4F can induce both Th1 and Th2 immune responses. The results of flow cytometry detection indicated that compared with the control group, all the immunogens elicited an increase in CD3. Simultaneously, the serum antibodies induced by YaH4F and YaHF could significantly enhance the ADCC effect compared with the control group, indicating that the antibodies in the serum effectively recognized the antigens on the cell surface and induced NK cells to kill infected cells directly. CONCLUSIONS YaH4F self-assembling nanoparticle obtained by prokaryotic expression has no less of an immune effect than YaHF, and H4 has great potential to become a key target for the easy and rapid preparation of epitope vaccines.
Collapse
Affiliation(s)
- Bo Wang
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, , 130012, Jilin, China
| | - Shuang Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Yongbo Qiao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Yu Fu
- Changchun Xinuo BioTechnology Co., Ltd, Changchun, 130015, Jilin, China
| | - Jiaojiao Nie
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Shun Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Xin Yao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Yi Pan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Linye Zhao
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, , 130012, Jilin, China
| | - Congmei Wu
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, , 130012, Jilin, China
| | - Yuhua Shi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Yuhe Yin
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, , 130012, Jilin, China.
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, Jilin, China. .,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, Jilin, China.
| |
Collapse
|
3
|
Canine Morbillivirus from Colombian Lineage Exhibits In Silico and In Vitro Potential to Infect Human Cells. Pathogens 2021; 10:pathogens10091199. [PMID: 34578231 PMCID: PMC8471232 DOI: 10.3390/pathogens10091199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
Canine morbillivirus (CDV) is a viral agent that infects domestic dogs and a vast array of wildlife species. It belongs to the Paramyxoviridae family, genus Morbillivirus, which is shared with the Measles virus (MeV). Both viruses employ orthologous cellular receptors, SLAM in mononuclear cells and Nectin-4 in epithelial cells, to enter the cells. Although CDV and MeV hemagglutinin (H) have similar functions in viral pathogenesis and cell tropism, the potential interaction of CDV-H protein with human cellular receptors is still uncertain. Considering that CDV is classified as a multi-host pathogen, the potential risk of CDV transmission to humans has not been fully discarded. In this study, we aimed to evaluate both in silico and in vitro, whether there is a cross-species transmission potential from CDV to humans. To accomplish this, the CDV-H protein belonging to the Colombian lineage was modelled. After model validations, molecular docking and molecular dynamics simulations were carried out between Colombian CDV-H protein and canine and human cellular receptors to determine different aspects of the protein-protein interactions. Moreover, cell lines expressing orthologous cellular receptors, with both reference and wild-type CDV strains, were conducted to determine the CDV cross-species transmission potential from an in vitro model. This in silico and in vitro approach suggests the possibility that CDV interacts with ortholog human SLAM (hSLAM) and human Nectin-4 receptors to infect human cell lines, which could imply a potential cross-species transmission of CDV from dogs to humans.
Collapse
|
4
|
Yan L, Hu J, Lei J, Shi Z, Xiao Q, Bi Z, Yao L, Li Y, Chen Y, Fang A, Li H, Song S, Liao M, Zhou J. Novel protein chip for the detection of antibodies against infectious bronchitis virus. BMC Vet Res 2018; 14:284. [PMID: 30223836 PMCID: PMC6142349 DOI: 10.1186/s12917-018-1586-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Infectious bronchitis (IB) caused by the IB virus (IBV) can cause acute damage to chickens around the world. Therefore, rapid diagnosis and immune status determination are critical for controlling IBV outbreaks. Enzyme-linked immunosorbent assays (ELISAs) have been widely used in the detection of IBV antibodies in the early infection and continuous infection of IB because they are more sensitive and quicker than other diagnostic methods. RESULTS We have developed two indirect microarray methods to detect antibodies against IBV: a chemiluminescent immunoassay test (CIT) and a rapid diagnostic test (RDT). IBV nonstructural protein 5 (nsp5) was expressed, purified from Escherichia coli, and used to spot the initiator integrated poly(dimethylsiloxane), which can provide a near "zero" background for serological assays. Compared with the IDEXX IBV Ab Test kit, CIT and RDT have a sensitivity and specificity of at least 98.88% and 91.67%, respectively. No cross-reaction was detected with antibodies against avian influenza virus subtypes (H5, H7, and H9), Newcastle disease virus, Marek's disease virus, infectious bursal disease virus, and chicken anemia virus. The coefficients of variation of the reproducibility of the intra- and inter-assays for CIT ranged from 0.8 to 18.63%. The reproducibility of RDT was consistent with the original results. The application of the IBV nsp5 protein microarray showed that the positive rate of the CIT was 96.77%, that of the nsp5 ELISA was 91.40%, and that of the RDT was 90.32%. Furthermore, the RDT, which was visible to the naked eye, could be completed within 15 min. Our results indicated that compared with nsp5 ELISA, the CIT was more sensitive, and the RDT had similar positive rates but was faster. Furthermore, the two proposed methods were specific and stable. CONCLUSIONS Two microarray assays, which were rapid, specific, sensitive, and relatively simple, were developed for the detection of an antibody against IBV. These methods can be of great value for the surveillance of pathogens and monitoring the efficiency of vaccination.
Collapse
Affiliation(s)
- Liping Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China. .,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China. .,Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Jianhua Hu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jing Lei
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhiyu Shi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qian Xiao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhenwei Bi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Lu Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yuan Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yuqing Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - An Fang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Hui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Min Liao
- Key Laboratory of Animal Virology, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jiyong Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China. .,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China. .,Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China. .,Key Laboratory of Animal Virology, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, People's Republic of China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
5
|
Lin KH, Lin CF, Chiou SS, Hsu AP, Lee MS, Chang CC, Chang TJ, Shien JH, Hsu WL. Application of purified recombinant antigenic spike fragments to the diagnosis of avian infectious bronchitis virus infection. Appl Microbiol Biotechnol 2012; 95:233-42. [PMID: 22627759 DOI: 10.1007/s00253-012-4143-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/23/2012] [Accepted: 04/25/2012] [Indexed: 10/28/2022]
Abstract
The spike (S) protein, containing two subunits, S1 and S2, is the major immunity-eliciting antigen of avian infectious bronchitis virus (IBV), a highly contagious disease of chickens. Several immunogenic regions, mainly located within the S1 subunit, have been identified. Nonetheless, these immune-dominant regions were defined using selected monoclonal antibodies or using a short peptide approach that involves only certain limited regions of the S protein. In addition, some immune-dominant regions are located in hypervariable regions (HVRs) which are not present in all serotypes. Hence, the aim of this study was to determine a broader range of antigenic regions that have strong antibody eliciting ability; these could then be applied for development of an IBV-diagnostic tool. Initially, the S1 and part of the S2 subunit protein (24-567 amino acids) were expressed as five fragments in prokaryotic system. The antigenicity was confirmed using IBV immunized sera. Performance of the S subfragments was evaluated by ELISA using a panel of field chicken sera with known IBV titres determined by a commercial kit. This indicated that, among the five antigenic recombinant proteins, the region S-E showed the highest specificity and sensitivity, namely 95.38 % and 96.29 %, respectively. The κ value for the in-house ELISA using the S-E fragment compared to a commercial kit was 0.9172, indicating a high agreement between these two methods. As region S-E harbors strong immunogenicity within the spike protein, it has the potential to be exploited as an antigen when developing a cost-effective ELISA-based diagnosis tool.
Collapse
Affiliation(s)
- Kuan-Hsun Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Rosa GN, Domingues HG, Santos MMABD, Felippe PAN, Spilki FR, Arns CW. Detecção molecular e análise filogenética do gene H de amostras do vírus da cinomose canina em circulação no município de Campinas, São Paulo. PESQUISA VETERINARIA BRASILEIRA 2012. [DOI: 10.1590/s0100-736x2012000100012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
O vírus da cinomose canina (CDV), um Morbillivirus da família Paramyxoviridae, é o agente etiológico de doença neurológica e sistêmica em cães. O diagnóstico laboratorial da infecção requer o isolamento viral ou detecção do material genético do vírus em secreções ou tecidos de cães com suspeita clínica da doença. A diversidade genética entre os isolados de CDV pode ser aferida pelo sequenciamento efilogenia molecular do gene que codifica a hemaglutinina viral (gene H), havendo atualmente um especial interesse em comparar as amostras circulantes a campo com o genogrupo América-1, que abrange as cepas presentes nas vacinas disponíveis no mercado. No presente estudo, foi realizada a detecção molecular do gene H de CDV a partir de amostras biológicas colhidas ante- e post- -mortem de 15 cães com sinais clínicos sugestivos de cinomose na região metropolitana de Campinas, São Paulo. Dez dos 15 cães analisados tiveram ao menos um órgão positivo na detecção molecular e os amplicons obtidos foram submetidos ao sequenciamento nucleotídico seguido de análise filogenética molecular. De forma semelhante ao que já foi reportado para estudo analisando a diversidade do gene H em outros países, a reconstrução filogenética obtida para as amostras de casos de cinomose da região de Campinas demonstrou as mesmas foram agrupadas junto a amostras norte-americanas, europeias e japonesas recentes, em um grupo genético distinto do grupo de amostras clássicas de CDV, nomeado America-1, o qual engloba as estirpes vacinais Snyder Hill, Onderstepoort e Lederle.
Collapse
|
7
|
Yi L, Cheng S, Xu H, Wang J, Cheng Y, Yang S, Luo B. Development of a combined canine distemper virus specific RT-PCR protocol for the differentiation of infected and vaccinated animals (DIVA) and genetic characterization of the hemagglutinin gene of seven Chinese strains demonstrated in dogs. J Virol Methods 2011; 179:281-7. [PMID: 22108430 PMCID: PMC7112914 DOI: 10.1016/j.jviromet.2011.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 10/29/2011] [Accepted: 11/09/2011] [Indexed: 11/02/2022]
Abstract
A combined reverse-transcription polymerase chain reaction (RT-PCR) method was developed for the detection and differentiation of wild-type and vaccine strains of the canine distemper virus (CDV). A pair of primers (P1/P2) was used to detect both CDV wild-type strains and vaccines. Another pair (P3/P4) was used to detect only CDV wild-type strains. A 335bp fragment was amplified from the genomic RNA of the vaccine and wild-type strains. A 555bp fragment was amplified specifically from the genomic RNA of the wild-type strains. No amplification was achieved for the uninfected cells, cells infected with canine parvovirus, canine coronavirus, or canine adenovirus. The combined RT-PCR method detected effectively and differentiated the CDV wild-type and vaccine strains by two separate RT-PCRs. The method can be used for clinical detection and epidemiological surveillance. The phylogenetic analysis of the hemagglutinin gene of the local wild-type CDV strains revealed that the seven local isolates all belonged to the Asia-1 lineage, and were clustered closely with one another at the same location. These results suggested that the CDV genotype Asia-1 is circulating currently in domestic dogs in China.
Collapse
Affiliation(s)
- Li Yi
- Division of Zoonoses, State Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, 15 Luming Street, Jilin 132109, China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Chulakasian S, Lee MS, Wang CY, Chiou SS, Lin KH, Lin FY, Hsu TH, Wong ML, Chang TJ, Hsu WL. Multiplex Amplification Refractory Mutation System Polymerase Chain Reaction (ARMS-PCR) for diagnosis of natural infection with canine distemper virus. Virol J 2010; 7:122. [PMID: 20534175 PMCID: PMC2907576 DOI: 10.1186/1743-422x-7-122] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 06/10/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Canine distemper virus (CDV) is present worldwide and produces a lethal systemic infection of wild and domestic Canidae. Pre-existing antibodies acquired from vaccination or previous CDV infection might interfere the interpretation of a serologic diagnosis method. In addition, due to the high similarity of nucleic acid sequences between wild-type CDV and the new vaccine strain, current PCR derived methods cannot be applied for the definite confirmation of CD infection. Hence, it is worthy of developing a simple and rapid nucleotide-based assay for differentiation of wild-type CDV which is a cause of disease from attenuated CDVs after vaccination. High frequency variations have been found in the region spanning from the 3'-untranslated region (UTR) of the matrix (M) gene to the fusion (F) gene (designated M-F UTR) in a few CDV strains. To establish a differential diagnosis assay, an amplification refractory mutation analysis was established based on the highly variable region on M-F UTR and F regions. RESULTS Sequences of frequent polymorphisms were found scattered throughout the M-F UTR region; the identity of nucleic acid between local strains and vaccine strains ranged from 82.5% to 93.8%. A track of AAA residue located 35 nucleotides downstream from F gene start codon highly conserved in three vaccine strains were replaced with TGC in the local strains; that severed as target sequences for deign of discrimination primers. The method established in the present study successfully differentiated seven Taiwanese CDV field isolates, all belonging to the Asia-1 lineage, from vaccine strains. CONCLUSIONS The method described herein would be useful for several clinical applications, such as confirmation of nature CDV infection, evaluation of vaccination status and verification of the circulating viral genotypes.
Collapse
Affiliation(s)
- Songkhla Chulakasian
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 250 Kou Kuang Road, Taichung 402, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|