1
|
Jazayeri SD, Poh CL. Recent advances in delivery of veterinary DNA vaccines against avian pathogens. Vet Res 2019; 50:78. [PMID: 31601266 PMCID: PMC6785882 DOI: 10.1186/s13567-019-0698-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/28/2019] [Indexed: 12/23/2022] Open
Abstract
Veterinary vaccines need to have desired characteristics, such as being effective, inexpensive, easy to administer, suitable for mass vaccination and stable under field conditions. DNA vaccines have been proposed as potential solutions for poultry diseases since they are subunit vaccines with no risk of infection or reversion to virulence. DNA vaccines can be utilized for simultaneous immunizations against multiple pathogens and are relatively easy to design and inexpensive to manufacture and store. Administration of DNA vaccines has been shown to stimulate immune responses and provide protection from challenges in different animal models. Although DNA vaccines offer advantages, setbacks including the inability to induce strong immunity, and the fact that they are not currently applicable for mass vaccination impede the use of DNA vaccines in the poultry industry. The use of either biological or physical carriers has been proposed as a solution to overcome the current delivery limitations of DNA vaccines for veterinary applications. This review presents an overview of the recent development of carriers for delivery of veterinary DNA vaccines against avian pathogens.
Collapse
Affiliation(s)
- Seyed Davoud Jazayeri
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
2
|
Comparison of different sites in recombinant Marek’s disease virus for the expression of green fluorescent protein. Virus Res 2017; 235:82-85. [DOI: 10.1016/j.virusres.2017.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 11/21/2022]
|
3
|
Dunn JR, Reddy SM, Niikura M, Nair V, Fulton JE, Cheng HH. Evaluation and Identification of Marek's Disease Virus BAC Clones as Standardized Reagents for Research. Avian Dis 2017; 61:107-114. [DOI: 10.1637/0005-2086-61.1.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- John R. Dunn
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, MI 48823
| | - Sanjay M. Reddy
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843
| | | | - Venugopal Nair
- Pirbright Institute, Pirbright, Surrey, GU24 0NF, United Kingdom
| | | | - Hans H. Cheng
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, MI 48823
| |
Collapse
|
4
|
Characterization of a Gallid herpesvirus 2 strain with novel reticuloendotheliosis virus long terminal repeat inserts. Virus Genes 2017; 53:386-391. [PMID: 28194622 DOI: 10.1007/s11262-017-1427-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/06/2017] [Indexed: 10/20/2022]
Abstract
A bacterial artificial chromosome clone, designated LCY, was constructed from a Gallid herpesvirus 2 (GaHV-2) isolate from a GaHV-2 and reticuloendotheliosis virus co-infected clinical sample. The LCY GaHV-2 insert was sequenced and found to consist of 175,319 nucleotides. LCY GaHV-2 open reading frames (ORFs) had a high sequence identity to those of reference strains. The major difference was that two REV long terminal repeats (LTRs), in the same direction, were inserted at the internal repeat short (IRs)/unique short (Us) and Us/terminal repeat short (TRs) junctions. In addition, the a-like sequence and UL36 were different from other strains. Phylogenetic analysis revealed that LCY was closely related to pandemic strains in China. A pathogenicity study and a vaccination-challenge test were performed on LCY and the reference strain, GA. The results showed that LCY induced gross Marek's disease (MD) lesions and mortality in 71.4 and 7.1% of chickens, respectively, which are lower rates than those observed for the reference strain GA (85.7 and 35.7%). The commercially available CVI988 vaccine provided complete protection against LCY and GA (100%). These results showed that the isolate exhibited lower pathogenicity in SPF chickens. This study revealed that a novel pattern of LTR inserts was found in the strain LCY and that the strain was of low virulence. The present work expands the available genetic information for GaHV-2 and will be useful for the control of MD in China.
Collapse
|
5
|
Li K, Liu Y, Liu C, Gao L, Zhang Y, Cui H, Gao Y, Qi X, Zhong L, Wang X. Recombinant Marek's disease virus type 1 provides full protection against very virulent Marek's and infectious bursal disease viruses in chickens. Sci Rep 2016; 6:39263. [PMID: 27982090 PMCID: PMC5159867 DOI: 10.1038/srep39263] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/22/2016] [Indexed: 11/24/2022] Open
Abstract
Marek’s disease virus (MDV) is a preferred vector in the construction of recombinant vaccines. However, bivalent vaccine based on MDV that confers full protection against both very virulent Marek’s and infectious bursal disease virus (IBDV) infections in chickens has not been produced. Here we developed a system utilizing overlapping fosmid DNAs transfection that rescues an MDV type 1 (MDV1) vaccine strain. Using this system, we inserted the IBDV VP2 gene at MDV1 genome sites UL41, US10 and US2. The VP2 protein was stably expressed in the recombinant MDV-infected cells and self-assembled into IBDV subviral particles. Insertion of the VP2 gene did not affect the replication phenotype of MDV in cell cultures, nor did it increase the virulence of the MDV vaccine strain in chickens. After challenge with very virulent IBDV, r814US2VP2 conferred full protection, whereas r814UL41VP2 and r814US10VP2 provided partial or no protection. All the three recombinant vaccines provided full protection against very virulent MDV challenge in chickens. These results demonstrated that r814US2VP2 could be used as a promising bivalent vaccine against both Marek’s and infectious bursal diseases in chickens.
Collapse
Affiliation(s)
- Kai Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R. China
| | - Yongzhen Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R. China
| | - Changjun Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R. China
| | - Li Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R. China
| | - Yanping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R. China
| | - Hongyu Cui
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R. China
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R. China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R. China
| | - Li Zhong
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R. China
| | - Xiaomei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R. China
| |
Collapse
|
6
|
Su S, Cui N, Li J, Sun P, Li H, Li Y, Cui Z. Deletion of the BAC sequences from recombinant meq-null Marek's disease (MD) virus increases immunosuppression while maintaining protective efficacy against MD. Poult Sci 2016; 95:1504-1512. [PMID: 26957626 DOI: 10.3382/ps/pew067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/28/2015] [Indexed: 11/20/2022] Open
Abstract
Marek's disease virus (MDV) GX0101 is a field strain of MDV with a naturally occurring insertion of the reticuloendotheliosis virus (REV) long terminal repeat (LTR) fragment. Both copies of the meq gene were knocked out in the GX0101 bacterial artificial chromosome (BAC) clone to construct the recombinant virus SC9-1, resulting in a complete lack of pathogenicity and providing better protection against MD than CVI988/Rispens. In the present study, the BAC sequences in SC9-1 were removed using a cre-loxP system, and the virus termed SC9-2. SC9-2 showed a significant increase in replication in vitro and in vivo. There was a significant decrease in chicken weight, immune organ index, and antibody levels compared with those of SC9-1-inoculated chickens. The immune protection index of SC9-2 was similar to that of SC9-1, and the difference was not significant. The results of our studies demonstrate that the SC9-2 virus provides protection in specific pathogen free (SPF) chickens when challenged with a very virulent MDV rMd5, but it induces immunosuppressive effects in SPF chickens.
Collapse
Affiliation(s)
- S Su
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - N Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - J Li
- Tengzhou Animal Husbandry and Veterinary Bureau, Tengzhou, Shandong, 277500, China
| | - P Sun
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - H Li
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Y Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Z Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
7
|
Zhang Z, Chen W, Ma C, Zhao P, Duan L, Zhang F, Sun A, Li Y, Su H, Li S, Cui H, Cui Z. Construction of recombinant Marek's disease virus (MDV) lacking the meq oncogene and co-expressing AIV-H9N2 HA and NA genes under control of exogenous promoters. J Biotechnol 2014; 181:45-54. [DOI: 10.1016/j.jbiotec.2014.03.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/24/2014] [Accepted: 03/27/2014] [Indexed: 11/30/2022]
|
8
|
Zhang Z, Ma C, Zhao P, Duan L, Chen W, Zhang F, Cui Z. Construction of recombinant Marek's disease virus (rMDV) co-expressing AIV-H9N2-NA and NDV-F genes under control of MDV's own bi-directional promoter. PLoS One 2014; 9:e90677. [PMID: 24599338 PMCID: PMC3944216 DOI: 10.1371/journal.pone.0090677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 02/03/2014] [Indexed: 11/29/2022] Open
Abstract
To qualitatively analyze and evaluate a bi-directional promoter transcriptional function in both transient and transgenic systems, several different plasmids were constructed and recombinant MDV type 1 strain GX0101 was developed to co-express a Neuraminidase (NA) gene from Avian Influenza Virus H9N2 strain and a Fusion (F) gene from the Newcastle disease virus (NDV). The two foreign genes, NDV-F gene and AIV-NA gene, were inserted in the plasmid driven in each direction by the bi-directional promoter. To test whether the expression of pp38/pp24 heterodimers are the required activators for the expression of the foreign genes, the recombinant plasmid pPpp38-NA/1.8kb-F containing expression cassette for the two foreign genes was co-transfected with a pp38/pp24 expression plasmid, pBud-pp38-pp24, in chicken embryo fibroblast (CEF) cells. Alternatively, plasmid pPpp38-NA/1.8kb-F was transfected in GX0101-infected CEFs where the viral endogenous pp38/pp24 were expressed via virus infection. The expression of both foreign genes was activated by pp38/pp24 dimers either via virus infection, or co-expression. The CEFs transfected with pPpp38-NA/1.8kb-F alone had no expression. We chose to insert the expression cassette of Ppp38-NA/1.8kb-F in the non-essential region of GX0101ΔMeq US2 gene, and formed a new rMDV named MZC13NA/F through homologous recombination. Indirect fluorescence antibody (IFA) test, ELISA and Western blot analyses indicated that F and NA genes were expressed simultaneously under control of the bi-directional promoter, but in opposite directions. The data also indicated the activity of the promoter in the 1.8-kb mRNA transcript direction was higher than that in the direction for the pp38 gene. The expression of pp38/pp24 dimers either via co-tranfection of the pBud-pp38-pp24 plasmid, or by GX0101 virus infection were critical to activate the bi-directional promoter for expression of two foreign genes in both directions. Therefore, the confirmed function of the bi-directional promoter provides better feasibilities to insert multiple foreign genes in MDV genome based vectors.
Collapse
Affiliation(s)
- Zhenjie Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Animal Disease Prevention Technology and Research Center of Shandong Province, Taian, China
| | - Chengtai Ma
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Animal Disease Prevention Technology and Research Center of Shandong Province, Taian, China
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Animal Disease Prevention Technology and Research Center of Shandong Province, Taian, China
| | - Luntao Duan
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Animal Disease Prevention Technology and Research Center of Shandong Province, Taian, China
| | - Wenqing Chen
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Animal Disease Prevention Technology and Research Center of Shandong Province, Taian, China
| | - Fushou Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Animal Disease Prevention Technology and Research Center of Shandong Province, Taian, China
| | - Zhizhong Cui
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Animal Disease Prevention Technology and Research Center of Shandong Province, Taian, China
- * E-mail:
| |
Collapse
|
9
|
Recombinant duck enteritis virus expressing the HA gene from goose H5 subtype avian influenza virus. Vaccine 2013; 31:5953-9. [PMID: 24144474 DOI: 10.1016/j.vaccine.2013.10.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/25/2013] [Accepted: 10/08/2013] [Indexed: 11/20/2022]
Abstract
The duck enteritis virus (DEV) may be a promising candidate viral vector for an aquatic poultry vaccination that can protect against multiple pathogens because it has a very large genome and a narrow host range. Recently, we described two DEV recombinants that contained deletions of the viral US2 or gIgE genes. The hemagglutinin (HA) gene of an H5N1-type highly pathogenic avian influenza virus (HPAIV) of goose origin was inserted into the deletion sites to construct two rDEVs expressing the AIV HA antigen. The resulting rDEV-ΔgIgE-HA or rDEV-ΔUS2-HA recombinant DEV viruses were used to infect duck embryo fibroblasts. Reverse transcription PCR, immunofluorescence and western blot analysis results indicated that rDEV-ΔgIgE-HA and rDEV-ΔUS2-HA were successfully expressed in duck embryo fibroblasts (DEFs). To investigate whether the HA gene could be stably maintained in the recombinant viruses, the viruses were passaged in DEFs 18 times. The HA gene in both recombinants could be detected by PCR amplification. The immunized four-week-old ducks induced specific antibodies against DEV and AIV HA and were protected against challenge infections with DEV AV1221 viruses.
Collapse
|
10
|
Cui H, Gao H, Cui X, Zhao Y, Shi X, Li Q, Yan S, Gao M, Wang M, Liu C, Wang Y. Avirulent Marek's disease virus type 1 strain 814 vectored vaccine expressing avian influenza (AI) virus H5 haemagglutinin induced better protection than turkey herpesvirus vectored AI vaccine. PLoS One 2013; 8:e53340. [PMID: 23301062 PMCID: PMC3536743 DOI: 10.1371/journal.pone.0053340] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 11/27/2012] [Indexed: 11/18/2022] Open
Abstract
Background Herpesvirus of turkey (HVT) as a vector to express the haemagglutinin (HA) of avian influenza virus (AIV) H5 was developed and its protection against lethal Marek’s disease virus (MDV) and highly pathogenic AIV (HPAIV) challenges was evaluated previously. It is well-known that avirulemt MDV type 1 vaccines are more effective than HVT in prevention of lethal MDV infection. To further increase protective efficacy against HPAIV and lethal MDV, a recombinant MDV type 1 strain 814 was developed to express HA gene of HPAIV H5N1. Methodology/Principal Findings A recombinant MDV-1 strain 814 expressing HA gene of HPAIV H5N1 virus A/goose/Guangdong/3/96 at the US2 site (rMDV-HA) was developed under the control of a human CMV immediate-early promoter. The HA expression in the rMDV-HA was tested by immunofluorescence and Western blot analyses, and in vitro and in vivo growth properties of rMDV-HA were also analyzed. Furthermore, we evaluated and compared the protective immunity of rMDV-HA and previously constructed rHVT-HA against HPAIV and lethal MDV. Vaccination of chickens with rMDV-HA induced 80% protection against HPAIV, which was better than the protection rate by rHVT-HA (66.7%). In the animal study with MDV challenge, chickens immunized with rMDV-HA were completely protected against virulent MDV strain J-1 whereas rHVT-HA only induced 80% protection with the same challenge dose. Conclusions/Significance The rMDV-HA vaccine was more effective than rHVT-HA vaccine for protection against lethal MDV and HPAIV challenges. Therefore, avirulent MDV type 1 vaccine is a better vector than HVT for development of a recombinant live virus vaccine against virulent MDV and HPAIV in poultry.
Collapse
Affiliation(s)
- Hongyu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongbo Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xianlan Cui
- Animal Health Laboratory, Department of Primary Industries, Parks, Water and Environment, Tasmania, Australia
| | - Yan Zhao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xingming Shi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qiaoling Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shuai Yan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ming Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changjun Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yunfeng Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
- * E-mail:
| |
Collapse
|
11
|
Iqbal M. Progress toward the development of polyvalent vaccination strategies against multiple viral infections in chickens using herpesvirus of turkeys as vector. Bioengineered 2012; 3:222-6. [PMID: 22705840 DOI: 10.4161/bioe.20476] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Vaccination is the most cost effective strategy for the control and prevention of the plethora of viral diseases affecting poultry production. The major challenge for poultry vaccination is the design of vaccines that will protect against multiple pathogens via a single protective dose, delivered by mass vaccination. The Marek disease virus and the highly pathogenic avian influenza virus cause severe disease outbreaks in chickens. Vaccination with live herpesvirus of turkeys protects chickens from Marek disease and inactivated influenza viruses are used as antigens to protect chickens against influenza virus infections. We developed herpesvirus of turkeys (HVT) as a vaccine vector that can act as a dual vaccine against avian influenza and Marek disease. The HVT vector was developed using reverse genetics based on an infectious bacterial artificial chromosome (BAC) clone of HVT. The BAC carrying the HVT genome was genetically modified to express the haemagglutinin (HA) gene of a highly pathogenic H7N1 virus. The resultant recombinant BAC construct containing the modified HVT sequence was transfected into chicken embryo fibroblast (CEF) cells and HVT recombinants (rHVT-H7HA) harbouring the H7N1 HA were recovered. Analysis of cultured CEF cells infected with the rHVT-H7HA showed that HA was expressed and that the rescued rHVT-H7HA stocks were stable during several in vitro passages with no difference in growth kinetics compared with the parent HVT. Immunization of one-day-old chicks with rHVT-H7HA induced H7-specific antibodies and protected chickens challenged with homologous H7N1 virus against virus shedding, clinical disease and death. The rHVT-H7HA vaccine also induced strong and long-lasting antibody titers against H7HA in chickens that were vaccinated in ovo 3 d before hatching. This vaccine supports differentiation between infected and vaccinated animals (DIVA), because no influenza virus nucleoprotein-specific antibodies were detected in the rHVT-H7HA vaccinated birds. The rHVT-H7HA not only provided protection against a lethal challenge with highly pathogenic H7N1 virus but also against highly virulent Marek disease virus and can be used as a DIVA vaccine.
Collapse
|
12
|
Li Y, Reddy K, Reid SM, Cox WJ, Brown IH, Britton P, Nair V, Iqbal M. Recombinant herpesvirus of turkeys as a vector-based vaccine against highly pathogenic H7N1 avian influenza and Marek's disease. Vaccine 2011; 29:8257-66. [PMID: 21907750 DOI: 10.1016/j.vaccine.2011.08.115] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 08/19/2011] [Accepted: 08/28/2011] [Indexed: 10/17/2022]
Abstract
A major challenge for poultry vaccination is the design of vaccines that protect against multiple pathogens via a single protective dose delivered through mass vaccination methods. In this investigation, we examined herpesvirus of turkeys (HVT) as a vaccine vector for delivery of haemagglutinin (HA) antigen of highly pathogenic H7N1 avian influenza virus that can act as a dual vaccine against avian influenza and Marek's disease. The HVT vector was developed using reverse genetics based on an infectious bacterial artificial chromosome (BAC) clone of HVT. The BAC carrying the HVT genome was genetically modified to express the HA gene of a highly pathogenic H7N1 virus. The resultant recombinant BAC construct containing the modified HVT sequence was transfected into chicken embryo fibroblast (CEF) cells, and HVT recombinants (rHVT-H7HA) harbouring the H7N1 HA were recovered. Analysis of cultured CEF cells infected with the rHVT-H7HA showed that HA was expressed and that the rescued rHVT-H7HA stocks were stable during several in vitro passages with no difference in growth kinetics compared with the parent HVT. Immunisation of one-day-old chicks with rHVT-H7HA induced H7-specific antibodies and protected chickens challenged with homologous H7N1 virus against virus shedding, clinical disease and death. This vaccine supports differentiation between infected and vaccinated animals (DIVA) vaccination strategies because no nucleoprotein-(NP) specific antibodies were detected in the rHVT-H7HA vaccinated birds. The rHVT-H7HA not only provided protection against a lethal challenge with highly pathogenic H7N1 virus but also against highly virulent Marek's disease virus and can be used as a DIVA vaccine.
Collapse
Affiliation(s)
- Yongqing Li
- Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire RG20 7NN, UK
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Gao H, Cui H, Cui X, Shi X, Zhao Y, Zhao X, Quan Y, Yan S, Zeng W, Wang Y. Expression of HA of HPAI H5N1 virus at US2 gene insertion site of turkey herpesvirus induced better protection than that at US10 gene insertion site. PLoS One 2011; 6:e22549. [PMID: 21818336 PMCID: PMC3144902 DOI: 10.1371/journal.pone.0022549] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 06/29/2011] [Indexed: 11/18/2022] Open
Abstract
Herpesvirus of turkey (HVT) is being widely used as a vector for development of recombinant vaccines and US2 and US10 genes are often chosen as insertion sites for targeted gene expression. However, the different effects of the two genes for generation of recombinant HVT vaccines were unknown. In order to compare the effects of inserted genes in the two sites on the efficacy of the recombinant vaccines, host-protective haemagglutinin (HA) gene of the highly pathogenic avian influenza virus (HPAIV) H5N1 was inserted into either US2 or US10 gene locus of the HVT. The resulting US2 (rHVT-US2-HA) or US10 (rHVT-US10-HA) recombinant HVT viruses were used to infect chicken embryo fibroblasts. Plaques and the growth kinetics of rHVT-US2-HA-infected chicken embryo fibroblasts were similar to those of parental HVT whereas rHVT-US10-HA infected chicken embryo fibroblasts had different growth kinetics and plaque formation. The viremia levels in rHVT-US10-HA virus-infected chickens were significantly lower than those of rHVT-US2-HA group on 28 days post infection. The vaccine efficacy of the two recombinant viruses against H5N1 HPAIV and virulent Marek's disease virus was also evaluated in 1-day-old vaccinated chickens. rHVT-US2-HA-vaccinated chickens were better protected with reduced mortality than rHVT-US10-HA-vaccinated animals following HPAIV challenge. Furthermore, the overall hemaglutination inhibition antibody titers of rHVT-US2-HA-vaccinated chickens were higher than those of rHVT-US10-HA-vaccinated chickens. Protection levels against Marek's disease virus challenge following vaccination with either rHVT-US2-HA or rHVT-US10-HA, however, were similar to those of the parental HVT virus. These results, for the first time, indicate that US2 gene provides a favorable foreign gene insertion site for generation of recombinant HVT vaccines.
Collapse
Affiliation(s)
- Hongbo Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
- Department of Animal Medicine, College of Animal Science and Veterinary Medicine, Hebei North University, Zhang-Jia-Kou, China
| | - Xianlan Cui
- Animal Health Laboratory, Department of Primary Industries, Parks, Water and Environment, Prospect, Australia
| | - Xingming Shi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yan Zhao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaoyan Zhao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanming Quan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shuai Yan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Weiwei Zeng
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yunfeng Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
- * E-mail:
| |
Collapse
|
14
|
Marek's disease viruses lacking either R-LORF10 or LORF4 have altered virulence in chickens. Virus Genes 2010; 40:410-20. [PMID: 20229182 DOI: 10.1007/s11262-010-0469-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 03/01/2010] [Indexed: 10/19/2022]
Abstract
The Marek's disease virus (MDV, Gallid herpesvirus 2) genome encodes approximately 110 open reading frames (ORFs). Many of these ORFs are annotated based purely on homology to other herpesvirus genes, thus, direct experiments are needed to verify the gene products, especially the hypothetical or MDV-specific ORFs, and characterize their biological function, particularly with respect to pathogenicity in chickens. Previously, a comprehensive two-hybrid assay screen revealed nine specific chicken-MDV protein-protein interactions. In order to characterize the role of hypothetical MDV proteins R-LORF10 and LORF4, which were shown to interact with major histocompatibility complex (MHC) class II beta chain and Ii (invariant or gamma) chain, respectively, recombinant MDVs derived from virulent MDV-BAC clone rMd5-B40 were generated. Recombinant MDV rMd5DeltaR-LORF10 lacked part of the promoter and the first 17 amino acids in both copies of R-LORF10, and rMd5mLORF4 had point mutations in LORF4 that disrupted the start codon and introduced a premature stop codon without altering the amino acid sequence of overlapping ORF UL1, which encodes glycoprotein L (gL). Mutations in either R-LORF10 or LORF4 neither prevent MDV reconstitution from modified MDV-BACs nor significantly alter virus growth rate in vitro. However, MDV generated from rMd5DeltaR-LORF10 had reduced virulence compared to the parental MDV. Surprisingly, MDV with the LORF4 mutations had significantly higher overall MD incidence as measured by mortality, tumor production, and MD symptoms in infected chickens. These results indicate R-LORF10 and LORF4 encode real products, and are involved in MDV virulence although their mechanisms, especially with respect to modulation of MHC class II cell surface expression, are not clearly understood.
Collapse
|
15
|
Functional evaluation of the role of reticuloendotheliosis virus long terminal repeat (LTR) integrated into the genome of a field strain of Marek's disease virus. Virology 2009; 397:270-6. [PMID: 19962172 DOI: 10.1016/j.virol.2009.11.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 08/31/2009] [Accepted: 11/10/2009] [Indexed: 11/20/2022]
Abstract
MDV-GX0101 is a field strain of Marek's disease virus with a naturally occurring insertion of the reticuloendotheliosis virus (REV) LTR fragment. In order to study the biological properties of REV-LTR insertion in the MDV genome, we constructed a full-length infectious BAC clone of MDV-GX0101 strain and deleted the LTR sequences by BAC mutagenesis. The pathogenic properties of the LTR-deleted virus were evaluated in infected SPF birds. The study demonstrated that the LTR-deleted virus had a stronger inhibitory effect on the growth rates of the infected birds and induced stronger immunosuppressive effects. Surprisingly, however, the ability for horizontal transmission of the LTR-deleted virus appeared to be significantly weaker than its parental LTR-intact virus. Even though the precise molecular mechanisms are still not clear, the results of our studies demonstrate that the retention of the REV-LTR in the MDV genome decreases its pathogenic effects but increases its potential for horizontal transmission.
Collapse
|