Ahmad P, Ashraf M, Younis M, Hu X, Kumar A, Akram NA, Al-Qurainy F. Role of transgenic plants in agriculture and biopharming.
Biotechnol Adv 2011;
30:524-40. [PMID:
21959304 DOI:
10.1016/j.biotechadv.2011.09.006]
[Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 08/23/2011] [Accepted: 09/12/2011] [Indexed: 11/29/2022]
Abstract
At present, environmental degradation and the consistently growing population are two main problems on the planet earth. Fulfilling the needs of this growing population is quite difficult from the limited arable land available on the globe. Although there are legal, social and political barriers to the utilization of biotechnology, advances in this field have substantially improved agriculture and human life to a great extent. One of the vital tools of biotechnology is genetic engineering (GE) which is used to modify plants, animals and microorganisms according to desired needs. In fact, genetic engineering facilitates the transfer of desired characteristics into other plants which is not possible through conventional plant breeding. A variety of crops have been engineered for enhanced resistance to a multitude of stresses such as herbicides, insecticides, viruses and a combination of biotic and abiotic stresses in different crops including rice, mustard, maize, potato, tomato, etc. Apart from the use of GE in agriculture, it is being extensively employed to modify the plants for enhanced production of vaccines, hormones, etc. Vaccines against certain diseases are certainly available in the market, but most of them are very costly. Developing countries cannot afford the disease control through such cost-intensive vaccines. Alternatively, efforts are being made to produce edible vaccines which are cheap and have many advantages over the commercialized vaccines. Transgenic plants generated for this purpose are capable of expressing recombinant proteins including viral and bacterial antigens and antibodies. Common food plants like banana, tomato, rice, carrot, etc. have been used to produce vaccines against certain diseases like hepatitis B, cholera, HIV, etc. Thus, the up- and down-regulation of desired genes which are used for the modification of plants have a marked role in the improvement of genetic crops. In this review, we have comprehensively discussed the role of genetic engineering in generating transgenic lines/cultivars of different crops with improved nutrient quality, biofuel production, enhanced production of vaccines and antibodies, increased resistance against insects, herbicides, diseases and abiotic stresses as well as the safety measures for their commercialization.
Collapse