1
|
Bellido D, Baztarrica J, Rocha L, Pecora A, Acosta M, Escribano JM, Parreño V, Wigdorovitz A. A novel MHC-II targeted BVDV subunit vaccine induces a neutralizing immunological response in guinea pigs and cattle. Transbound Emerg Dis 2020; 68:3474-3481. [PMID: 33300298 DOI: 10.1111/tbed.13952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/17/2020] [Accepted: 12/05/2020] [Indexed: 11/26/2022]
Abstract
Bovine viral diarrhoea virus (BVDV) is a major cause of economic loss in the cattle industry, worldwide. Infection results in reduced productive performance, growth retardation, reduced milk production and increased susceptibility to other diseases leading to early culling of animals. There are two primary methods used to control the spread of BVDV: the elimination of persistently infected (PI) animals and vaccination. Currently, modified live or inactivated vaccines are used in BVDV vaccination programmes, but there are safety risks or insufficient protection, respectively, with these vaccines. Here, we report the development and efficacy of the first targeted subunit vaccine against BVDV. The core of the vaccine is the fusion of the BVDV structural protein, E2, to a single-chain antibody, APCH, together termed, APCH-E2. The APCH antibody targets the E2 antigen to the major histocompatibility type II molecule (MHC-II) present on antigen-presenting cells. Industrial production of the vaccine is carried out using the baculovirus expression vector system (BEVS) using single-use manufacturing technologies. This new subunit vaccine induces strong BVDV-specific neutralizing antibodies in guinea pigs and cattle. Importantly, in cattle with low levels of natural BVDV-specific neutralizing antibodies, the vaccine induced strong neutralizing antibody levels to above the protective threshold, as determined by a competition ELISA. The APCH-E2 vaccine induced a rapid and sustained neutralizing antibody response compared with a conventional vaccine in cattle.
Collapse
Affiliation(s)
- Demian Bellido
- Vetanco SA, Buenos Aires, Argentina.,Bioinnovo SA, Hurlingham, Buenos Aires, Argentina
| | - Josefina Baztarrica
- Vetanco SA, Buenos Aires, Argentina.,Bioinnovo SA, Hurlingham, Buenos Aires, Argentina
| | - Lucía Rocha
- IVIT - INTA, CONICET, INCUINTA, Hurlingham, Buenos Aires, Argentina
| | - Andrea Pecora
- IVIT - INTA, CONICET, INCUINTA, Hurlingham, Buenos Aires, Argentina
| | | | | | - Viviana Parreño
- Bioinnovo SA, Hurlingham, Buenos Aires, Argentina.,IVIT - INTA, CONICET, INCUINTA, Hurlingham, Buenos Aires, Argentina
| | - Andrés Wigdorovitz
- Bioinnovo SA, Hurlingham, Buenos Aires, Argentina.,IVIT - INTA, CONICET, INCUINTA, Hurlingham, Buenos Aires, Argentina
| |
Collapse
|
2
|
Development of an APC-targeted multivalent E2-based vaccine against Bovine Viral Diarrhea Virus types 1 and 2. Vaccine 2015; 33:5163-71. [DOI: 10.1016/j.vaccine.2015.07.106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/27/2015] [Accepted: 07/31/2015] [Indexed: 01/08/2023]
|
3
|
Pecora A, Malacari DA, Pérez Aguirreburualde MS, Bellido D, Escribano JM, Dus Santos MJ, Wigdorovitz A. Development of an enhanced bovine viral diarrhea virus subunit vaccine based on E2 glycoprotein fused to a single chain antibody which targets to antigen-presenting cells. Rev Argent Microbiol 2015; 47:4-8. [PMID: 25697468 DOI: 10.1016/j.ram.2014.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/22/2014] [Accepted: 12/26/2014] [Indexed: 11/28/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is an important cause of economic losses worldwide. E2 is an immunodominant protein and a promising candidate to develop subunit vaccines. To improve its immunogenicity, a truncated E2 (tE2) was fused to a single chain antibody named APCH, which targets to antigen-presenting cells. APCH-tE2 and tE2 proteins were expressed in the baculovirus system and their immunogenicity was firstly compared in guinea pigs. APCH-tE2 vaccine was the best one to evoke a humoral response, and for this reason, it was selected for a cattle vaccination experiment. All the bovines immunized with 1.5 μg of APCH-tE2 developed high levels of neutralizing antibodies against BVDV up to a year post-immunization, demonstrating its significant potential as a subunit vaccine. This novel vaccine is undergoing scale-up and was transferred to the private sector. Nowadays, it is being evaluated for registration as the first Argentinean subunit vaccine for cattle.
Collapse
Affiliation(s)
- Andrea Pecora
- Instituto de Virología, CICVyA, INTA Castelar, Buenos Aires, Argentina.
| | - Darío A Malacari
- Instituto de Virología, CICVyA, INTA Castelar, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
4
|
Gutiérrez-Granados S, Cervera L, Gòdia F, Carrillo J, Segura MM. Development and validation of a quantitation assay for fluorescently tagged HIV-1 virus-like particles. J Virol Methods 2013; 193:85-95. [DOI: 10.1016/j.jviromet.2013.05.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 04/24/2013] [Accepted: 05/08/2013] [Indexed: 02/03/2023]
|
5
|
Peréz Aguirreburualde MS, Gómez MC, Ostachuk A, Wolman F, Albanesi G, Pecora A, Odeon A, Ardila F, Escribano JM, Dus Santos MJ, Wigdorovitz A. Efficacy of a BVDV subunit vaccine produced in alfalfa transgenic plants. Vet Immunol Immunopathol 2012; 151:315-24. [PMID: 23291101 DOI: 10.1016/j.vetimm.2012.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/08/2012] [Accepted: 12/07/2012] [Indexed: 01/16/2023]
Abstract
Bovine viral diarrhea virus (BVDV) is considered an important cause of economic loss within bovine herds worldwide. In Argentina, only the use of inactivated vaccines is allowed, however, the efficacy of inactivated BVDV vaccines is variable due to its low immunogenicity. The use of recombinant subunit vaccines has been proposed as an alternative to overcome this difficulty. Different studies on protection against BVDV infection have focused the E2 protein, supporting its putative use in subunit vaccines. Utilization of transgenic plants expressing recombinant antigens for the formulation of experimental vaccines represents an innovative and cost effective alternative to the classical fermentation systems. The aim of this work was to develop transgenic alfalfa plants (Medicago sativa, L.) expressing a truncated version of the structural protein E2 from BVDV fused to a molecule named APCH, that target to antigen presenting cells (APCH-tE2). The concentration of recombinant APCH-tE2 in alfalfa leaves was 1 μg/g at fresh weight and its expression remained stable after vegetative propagation. A methodology based an aqueous two phases system was standardized for concentration and partial purification of APCH-tE2 from alfalfa. Guinea pigs parentally immunized with leaf extracts developed high titers of neutralizing antibodies. In bovine, the APCH-tE2 subunit vaccine was able to induce BVDV-specific neutralizing antibodies. After challenge, bovines inoculated with 3 μg of APCH-tE2 produced in alfalfa transgenic plants showed complete virological protection.
Collapse
|
6
|
Nelson G, Marconi P, Periolo O, La Torre J, Alvarez MA. Immunocompetent truncated E2 glycoprotein of bovine viral diarrhea virus (BVDV) expressed in Nicotiana tabacum plants: a candidate antigen for new generation of veterinary vaccines. Vaccine 2012; 30:4499-504. [PMID: 22554468 DOI: 10.1016/j.vaccine.2012.04.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 04/16/2012] [Accepted: 04/21/2012] [Indexed: 10/28/2022]
Abstract
The bovine viral diarrhea virus (BVDV) is the etiological agent responsible for a wide spectrum of clinical diseases in cattle. The glycoprotein E2 is the major envelope protein of this virus and the strongest inductor of the immune response. There are several available commercial vaccines against bovine viral diarrhea (BVD), which show irregular performances. Here, we report the use of tobacco plants as an alternative productive platform for the expression of the truncated version of E2 glycoprotein (tE2) from the BVDV. The tE2 sequence, lacking the transmembrane domain, was cloned into the pK7WG2 Agrobacterium binary vector. The construct also carried the 2S2 Arabidopsis thaliana signal for directing the protein into the plant secretory pathway, the Kozak sequence, an hexa-histidine tag to facilitate protein purification and the KDEL endoplasmic reticulum retention signal. The resulting plasmid (pK-2S2-tE2-His-KDEL) was introduced into Agrobacterium tumefaciens strain EHA101 by electroporation. The transformed A. tumefaciens was then used to express tE2 in leaves of Nicotiana tabacum plants. Western blot and ELISA using specific monoclonal antibodies confirmed the presence of the recombinant tE2 protein in plant extracts. An estimated amount of 20 μg of tE2 per gram of fresh leaves was regularly obtained with this plant system. Injection of guinea pigs with plant extracts containing 20 μg of rtE2 induced the production of BVDV specific antibodies at equal or higher levels than those induced by whole virus vaccines. This is the first report of the production of an immunocompetent tE2 in N. tabacum plants, having the advantage to be free of any eventual animal contaminant.
Collapse
Affiliation(s)
- Guillermo Nelson
- Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET - Fundación Pablo Cassará, Saladillo 2468, Ciudad de Buenos Aires, C11440FFX, Argentina
| | | | | | | | | |
Collapse
|
7
|
Pecora A, Aguirreburualde MSP, Aguirreburualde A, Leunda MR, Odeon A, Chiavenna S, Bochoeyer D, Spitteler M, Filippi JL, Dus Santos MJ, Levy SM, Wigdorovitz A. Safety and efficacy of an E2 glycoprotein subunit vaccine produced in mammalian cells to prevent experimental infection with bovine viral diarrhoea virus in cattle. Vet Res Commun 2012; 36:157-64. [DOI: 10.1007/s11259-012-9526-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2012] [Indexed: 10/28/2022]
|
8
|
Franco Mahecha O, Ogas Castells M, Combessies G, Lavoria M, Wilda M, Mansilla F, Seki C, Grigera P, Capozzo A. Single dilution Avidity-Blocking ELISA as an alternative to the Bovine Viral Diarrhea Virus neutralization test. J Virol Methods 2011; 175:228-35. [DOI: 10.1016/j.jviromet.2011.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022]
|
9
|
Capozzo AV, Martínez MR, Schielen WJG. Development of an in process control filtration-assisted chemiluminometric immunoassay to quantify foot and mouth disease virus (FMDV) non-capsid proteins in vaccine-antigen batches. Vaccine 2010; 28:6647-52. [PMID: 20685600 DOI: 10.1016/j.vaccine.2010.05.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 05/17/2010] [Accepted: 05/18/2010] [Indexed: 11/26/2022]
Abstract
In many countries, foot and mouth disease (FMD) is controlled by vaccination and surveillance against non-capsid proteins (NCP); therefore vaccines are required not to induce antibodies against NCP. Vaccine purity is evaluated by repeated inoculation of naïve cattle, an expensive and time consuming protocol that raises several animal welfare concerns. We have developed an in process control filtration-assisted chemiluminometric immunoassay (FAL-ELISA), to detect and quantify NCP in vaccine-antigen batches regardless of its volume and composition. Samples are filtered through PVDF-filter microplates pre-coated with a monoclonal antibody against NCP. Filtration removes all unbound components in the sample and captured NCP are detected by anti-NCP conjugate followed by incubation with the substrate, luminol/peroxide. Analytical detection limit was 2 ng for purified NCP and 4 ng for vaccine-antigen batches spiked with NCP, which makes this assay sensitive enough to be applied to purity control of FMD vaccines. Vaccine components did not interfere with the antibody and substrate reactions in the assay. FAL-ELISA is an alternative for the in vivo tests, observing the objective to Replace, Reduce and Refine the use of animals for quality control of immunobiologicals.
Collapse
Affiliation(s)
- Alejandra Victoria Capozzo
- Instituto de Ciencia y Tecnología Dr. César Milstein, Saladillo 2468, 1440 Ciudad de Buenos Aires, Argentina
| | | | | |
Collapse
|
10
|
Takahashi MN, Rolling JA, Owen KE. Characterization of transgene expression in adenoviral vector-based HIV-1 vaccine candidates. Virol J 2010; 7:39. [PMID: 20163742 PMCID: PMC2828417 DOI: 10.1186/1743-422x-7-39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 02/18/2010] [Indexed: 11/10/2022] Open
Abstract
Recombinant adenovirus vectors have been extensively used in gene therapy clinical studies. More recently, the capability of inducing potent cell-mediated and humoral immunity has made these vectors equally attractive candidates for prophylactic or therapeutic vaccine applications. Merck and Co., Inc., developed HIV-1 vaccine candidates based on adenovirus serotype 5 (Ad5) vectors in which the E1 gene, a critical component for adenovirus replication, was replaced by the cytomegalovirus immediate/early promoter, followed by mutated versions of the HIV-1 gag, pol or nef genes (constructs referred to as MRKAd5gag, MRKAd5pol and MRKAd5nef, respectively). Vaccine performance was evaluated in vitro in a novel assay that measures the level of transgene expression in non-permissive A549 cells. Various combinations of vectors were studied. The results indicate that the vaccine induces a dose-dependent expression of the HIV-1 transgenes in vitro. Furthermore, the gag, pol, and nef transgenes are expressed differentially in A549 cells in an MOI-dependent and formulation-dependent manner, yielding an unexpected enhancement of protein expression in trivalent vs. monovalent formulations. Our data suggest that the presence of additional virus in multivalent formulations increases individual transgene expression in A549 cells, even when the amount of DNA encoding the gene of interest remains constant. This enhancement appears to be controlled at the transcriptional level and related to both the total amount of virus and the combination of transgenes present in the formulation.
Collapse
|
11
|
Development and statistical validation of a guinea pig model for vaccine potency testing against Infectious Bovine Rhinothracheitis (IBR) virus. Vaccine 2010; 28:2539-49. [PMID: 20123054 PMCID: PMC7115698 DOI: 10.1016/j.vaccine.2010.01.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/14/2010] [Accepted: 01/16/2010] [Indexed: 11/22/2022]
Abstract
Infectious Bovine Rhinothracheitis (IBR) caused by bovine herpesvirus 1 (BoHV-1) infection is distributed worldwide. BoHV-1 either alone or in association with other respiratory cattle pathogens causes significant economic losses to the livestock industry. The aim of this work was to validate a guinea pig model as an alternative method to the current BoHV-1 vaccine potency testing in calves. Guinea pigs were immunized with two doses of vaccine, 21 days apart and sampled at 30 days post vaccination (dpv). BoHV-1 antibody (Ab) response to vaccination in guinea pigs, measured by ELISA and virus neutralization (VN), was statistically compared to the Ab response in cattle. The guinea pig model showed a dose-response relationship to the BoVH-1 antigen concentration in the vaccine and it was able to discriminate among vaccines containing 1log(10) difference in its BoHV-1 concentration with very good repeatability and reproducibility (CV < or = 20%). A regression analysis of the Ab titers obtained in guinea pigs and bovines at 30 and 60dpv, respectively, allowed us to classify vaccines in three potency categories: "very satisfactory", "satisfactory" and "unsatisfactory". Bovines immunized with vaccines corresponding to each of these three categories were experimentally challenged with BoVH-1 virus, the level of protection, as measured by reduction of virus shedding and disease severity, correlated well with the vaccine category used. Data generated by 85 experiments, which included vaccination of calves and guinea pigs with 18 reference vaccines of known potency, 8 placebos and 18 commercial vaccines, was subjected to statistical analysis. Concordance analysis indicated almost perfect agreement between the model and the target species for Ab titers measured by ELISA and almost perfect to substantial agreement when Ab titers were measured by VN. Taken together these results indicate that the developed guinea pig model represents a novel and reliable tool to estimate batch-to-batch vaccine potency and to predict efficacy of killed BoHV-1 veterinary vaccines.
Collapse
|