1
|
Wang M, Zhao D, Li J, Zhu L, Duan X, Zhang Y, Li Y, Liu F. AAACH is a conserved motif in a cis-acting replication element that is artificially inserted into Senecavirus A genome. Virus Res 2024; 339:199269. [PMID: 37952688 PMCID: PMC10694738 DOI: 10.1016/j.virusres.2023.199269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023]
Abstract
Cis-acting replication element (cre) is required for generating a diuridylylated VPg that acts as a protein primer to initiate the synthesis of picornaviral genome or antigenome. The cre is a stem-loop structure, dependent of different picornaviruses, located in different genomic regions. The AAACA motif is highly conserved in the apical loop of cre among several picornaviral members, and plays a key role in synthesizing a diuridylylated VPg. We previously demonstrated that senecavirus A (SVA) also possesses an AAACA-containing cre in its genome. Its natural cre (Nc), if functionally inactivated through site-directed mutagenesis (SDM), would confer a lethal impact on virus recovery, whereas an artificial cre (Ac) is able to compensate for the Nc-caused functional inactivation, leading to successful rescue of a viable SVA. In this study, we constructed a set of SVA cDNA clones. Each of them contained one functionally inactivated Nc, and an extra SDM-modified Ac. Every cDNA clone had a unique SDM-modified Ac. The test of virus recovery showed that only two SVAs were rescued from their individual cDNA clones. They were AAACU- and AAACC-containing Ac genotypes. Both viruses were serially passaged in vitro for analyzing their viral characteristics. The results showed that both AAACU and AAACC genotypes were genetically stable during twenty passages, implying when the Nc was functionally inactivated, SVA could still use an AAACH-containing Ac to complete its own replication cycle.
Collapse
Affiliation(s)
- Mengyao Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Di Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Li
- Market Supervision Administration of Huangdao District, Qingdao, 266500, China
| | - Lijie Zhu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoxiao Duan
- Qingdao Center for Animal Disease Control & Prevention, Qingdao, 266199, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yan Li
- Qingdao Center for Animal Disease Control & Prevention, Qingdao, 266199, China.
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
2
|
Zhao D, Li Y, Li Z, Zhu L, Sang Y, Zhang H, Zhang F, Ni B, Liu F. Only fourteen 3'-end poly(A)s sufficient for rescuing Senecavirus A from its cDNA clone, but inadequate to meet requirement of viral replication. Virus Res 2023; 328:199076. [PMID: 36841440 DOI: 10.1016/j.virusres.2023.199076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023]
Abstract
Senecavirus A (SVA) belongs to the genus Senecavirus in the family Picornaviridae. Its genome is a positive-sense, single-strand RNA that has 5' and 3' untranslated regions. There is a poly(A) tail at the 3' end of viral genome. Although the number of poly(A)s is variable, the length of poly(A) tail generally has the minimum nucleotide limit for picornaviral replication. To identify a range limit of poly(A)s for SVA recovery, five SVA cDNA clones, separately containing 25, 20, 15, 10 and 5 poly(A)s, were constructed for rescuing viruses. Replication-competent SVAs could be rescued from the first three cDNA clones, implying the range limit of poly(A)s was (A)15 to (A)10. To recognize the precise limit, four extra cDNA clones, separately containing 14, 13, 12 and 11 poly(A)s, were constructed to rescue SVAs further. The replication-competent SVA was rescued only from the poly(A)14-containing plasmid, indicating that the precise limit was poly(A)14 at the 3' end of cDNA clone for SVA recovery. The rescued SVA was serially passaged in cells. The passage-5 and -10 progenies were independently subjected to the analysis of 3'-rapid amplification of cDNA ends. Both progenies showed their own poly(A) tails far more than 14 (A)s, implying extra (A)s added to the poly(A)14 sequence during viral passaging. It can be concluded that fourteen (A)s are sufficient for rescuing a replication-competent SVA from its cDNA clone, but inadequate for maintaining viral propagation in cells.
Collapse
Affiliation(s)
- Di Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China; College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, 010018, China
| | - Yan Li
- Qingdao Center for Animal Disease Control & Prevention, Qingdao, 266199, China
| | - Ziwei Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China; Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, 266032, China
| | - Lijie Zhu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuxuan Sang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hui Zhang
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, 266032, China
| | - Feng Zhang
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, 266032, China
| | - Bo Ni
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, 266032, China.
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
3
|
Meng H, Wang Q, Liu M, Li Z, Hao X, Zhao D, Dong Y, Liu S, Zhang F, Cui J, Ni B, Shan H, Liu F. The 5′-end motif of Senecavirus A cDNA clone is genetically modified in 36 different ways for uncovering profiles of virus recovery. Front Microbiol 2022; 13:957849. [PMID: 36060787 PMCID: PMC9428520 DOI: 10.3389/fmicb.2022.957849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022] Open
Abstract
Senecavirus A (SVA) is an emerging picornavirus. Its genome is one positive-sense, single-stranded RNA. The viral protein (VPg) is covalently linked to the extreme 5′ end of the SVA genome. A complex hairpin-pseudoknot-hairpin (HPH) RNA structure was computationally predicted to form at the 5′ end of the SVA genome. A total of three extra “U” residues (UUU) served as a linker between the HPH structure and the VPg, causing putative UUU–HPH formation at the extreme 5′ end of the SVA genome. It is unclear how the UUU–HPH structure functions. One SVA cDNA clone (N0) was constructed previously in our laboratory. Here, the N0 was genetically tailored for reconstructing a set of 36 modified cDNA clones (N1 to N36) in an attempt to rescue replication-competent SVAs using reverse genetics. The results showed that a total of nine viruses were successfully recovered. Out of them, five were independently rescued from the N1 to N5, reconstructed by deleting the first five nucleotides (TTTGA) one by one from the extreme 5′ end of N0. Interestingly, these five viral progenies reverted to the wild-type or/and wild-type-like genotype, suggesting that SVA with an ability to repair nucleotide defects in its extreme 5′ end. The other four were independently rescued from the N26 to N29, containing different loop-modifying motifs in the first hairpin of the HPH structure. These four loop-modifying motifs were genetically stable after serial passages, implying the wild-type loop motif was not a high-fidelity element in the first hairpin during SVA replication. The other genetically modified sequences were demonstrated to be lethal elements in the HPH structure for SVA recovery, suggesting that the putative HPH formation was a crucial cis-acting replication element for SVA propagation.
Collapse
Affiliation(s)
- Hailan Meng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qi Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Meiling Liu
- Department of Animal Medicine, Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Ziwei Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Xiaojing Hao
- Qingdao Workstation of Animal Husbandry, Qingdao, China
| | - Di Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yaqin Dong
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Shuang Liu
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Feng Zhang
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Jin Cui
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Bo Ni
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, China
- *Correspondence: Bo Ni
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Hu Shan
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Fuxiao Liu
| |
Collapse
|