1
|
Licciardello G, Scuderi G, Russo M, Bazzano M, Bar-Joseph M, Catara AF. Minor Variants of Orf1a, p33, and p23 Genes of VT Strain Citrus Tristeza Virus Isolates Show Symptomless Reactions on Sour Orange and Prevent Superinfection of Severe VT Isolates. Viruses 2023; 15:2037. [PMID: 37896814 PMCID: PMC10612028 DOI: 10.3390/v15102037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
The control of tristeza quick decline (QD) of citrus is based on the use of rootstocks that are tolerant or resistant to the Citrus tristeza virus (CTV), but some of them show bio-agronomic limits. The application of cross-protection (CP) has been insufficiently explored. The present study examined the possibility of QD control by cross-protection (CP) following reports showing the dependence of the CP strategy on the close genetic relationships between the protective and challenging CTV isolates. Taking advantage of deep sequencing technologies, we located six naturally infected trees harboring no-seedling yellow (no-SY) and no QD decline (mild) VT isolates and used these for challenge inoculation with three QD VT isolates. Symptom monitoring showed that all six Sicilian mild no-SY isolates, based on their genomic relatedness and mild symptoms reactions, provide effective protection against the three severe local VT isolates. The differences between the six mild and three severe isolates were confined to just a few nucleotide variations conserved in eight positions of three CTV genes (p23, p33, and Orf1a). These results confirm that the superinfection exclusion (SIE mechanism) depends on close genetic relatedness between the protective and challenging severe VT strain isolates. Ten years of investigation suggest that CP could turn into an efficient strategy to contain CTV QD infections of sweet orange trees on SO rootstock.
Collapse
Affiliation(s)
- Grazia Licciardello
- CREA—Council for Agricultural Research and Economics, Research Centre for Olive, Citrus and Tree Fruit, 95024 Acireale, Italy
| | - Giuseppe Scuderi
- Agrobiotech Soc. Coop. z.i. Blocco Palma I, Stradale Lancia 57, 95121 Catania, Italy; (G.S.); (M.R.); (M.B.)
| | - Marcella Russo
- Agrobiotech Soc. Coop. z.i. Blocco Palma I, Stradale Lancia 57, 95121 Catania, Italy; (G.S.); (M.R.); (M.B.)
| | - Marina Bazzano
- Agrobiotech Soc. Coop. z.i. Blocco Palma I, Stradale Lancia 57, 95121 Catania, Italy; (G.S.); (M.R.); (M.B.)
| | - Moshe Bar-Joseph
- The S. Tolkowsky Laboratory, Department of Plant Pathology, The Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel;
| | - Antonino F. Catara
- Formerly, Department of Phytosanitary Science and Technologies, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
2
|
Selvaraj V, Maheshwari Y, Hajeri S, Yokomi R. A rapid detection tool for VT isolates of Citrus tristeza virus by immunocapture-reverse transcriptase loop-mediated isothermal amplification assay. PLoS One 2019; 14:e0222170. [PMID: 31487325 PMCID: PMC6728045 DOI: 10.1371/journal.pone.0222170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/21/2019] [Indexed: 11/18/2022] Open
Abstract
Severe strains of Citrus tristeza virus (CTV) cause quick decline and stem pitting resulting in significant economic losses in citrus production. A immunocapture reverse-transcriptase loop-mediated amplification (IC-RT-LAMP) assay was developed in this study to detect the severe VT strains that are typically associated with severe CTV symptoms. The sensitivity of RT-LAMP assay was determined by ten-fold serial dilutions of CA-VT-AT39 RNA, in comparison to one-step RT-droplet digital (dd) PCR. RT-LAMP detected up to 0.002 ng RNA with an amplification time of 10:35 (min:sec.), equivalent to 11.3 copies as determined by one step RT-ddPCR. The RT-LAMP assay specifically detected CA-VT-AT39 RNA and did not cross react with other CTV genotypes tested (T36, T30, RB, S1 and T68). To facilitate rapid on-site detection, the RT-LAMP assay was improved by first capturing the CTV virions from citrus crude leaf sap using CTV-IgG (IC-RT-LAMP), thereby eliminating nucleic acid extraction steps. IC-RT-LAMP assay was optimized with two-fold dilutions of CTV-IgG ranging from 1:500 to 1:16,000. The IC-RT-LAMP assay detected the CA-VT-AT39 virions in all dilutions tested. The minimum amplification time was 6:45 (min:sec) with 1:500 and 1:1000 of CTV-IgG dilutions. The limit of detection of IC-RT-LAMP assay with crude leaf sap of CA-VT-AT39 was 1:320 with a maximum amplification time of 9:08 (min:sec). The IC-RT-LAMP assay was validated for VT genotype by comparing to IC-RT-qPCR using the CTV from 40 field tree samples. A 100% agreement was observed between tests, regardless of single or mixed infections of CTV VT with other genotypes. Therefore, the IC-RT-LAMP assay can serve as a useful tool in the management of potentially severe strains of CTV.
Collapse
Affiliation(s)
- Vijayanandraj Selvaraj
- USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, United States of America
| | - Yogita Maheshwari
- USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, United States of America
| | - Subhas Hajeri
- Citrus Pest Detection Program, Central California Tristeza Eradication Agency, Tulare, CA, United States of America
| | - Raymond Yokomi
- USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, United States of America
| |
Collapse
|
3
|
Assessment of Genetic Variability of Citrus tristeza virus by SSCP and CE-SSCP. Methods Mol Biol 2019. [PMID: 31222698 DOI: 10.1007/978-1-4939-9558-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Single-strand conformation polymorphism (SSCP) is a popular method used to study the genetic heterogeneity and population variability of Citrus tristeza virus (CTV) isolates. It is a simple, low-cost, and highly specific method for mutation detection of specific genes, mostly of the CTV major coat protein gene (p25). The technique is based on a comparison on polyacrylamide gel of electrophoretic profiles of single-stranded (ss) DNA sequences in terms of their spatial conformation. SSCP involves cDNA synthesis and amplification of the target gene, denaturation of single strands, and electrophoresis in non-denaturing conditions. The ssDNAs can be afterward visualized by staining the polyacrylamide gel. Alternatively, using fluorescently labeled primers, the procedure can be performed in automated sequencers equipped with an appropriate capillary (CE-SSCP), which increases the potential of high-throughput analysis, precision, and the reproducibility of results. CE-SSCP can be also directly applied to the virus particles obtained by elution from ELISA plates or tissue-print membranes.
Collapse
|
4
|
Russo M, Catara AF. Phenotyping Biological Properties of CTV Isolates. Methods Mol Biol 2019; 2015:15-27. [PMID: 31222694 DOI: 10.1007/978-1-4939-9558-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The protocol described is intended to be used alongside molecular methods in order to reveal the relationship between the genome sequence and the biological properties of a single isolate of Citrus tristeza virus complex (CTV). It enables the phenotypic profile of the isolates to be defined and to infer the associated tristeza diseases (decline, seedling yellows, or stem pitting), to assess their aggressiveness or potential cross protectiveness (if any), and to monitor their movement into the host plants and the transmissibility by aphids.
Collapse
Affiliation(s)
| | - Antonino F Catara
- Formerly, Department of Phytosanitary Sciences, University of Catania, Catania, Italy
- Science and Technology Park of Sicily, Catania, Italy
| |
Collapse
|
5
|
Scuderi G, Catara AF, Licciardello G. Genotyping Citrus tristeza virus Isolates by Sequential Multiplex RT-PCR and Microarray Hybridization in a Lab-on-Chip Device. Methods Mol Biol 2019; 2015:127-142. [PMID: 31222700 DOI: 10.1007/978-1-4939-9558-5_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Citrus tristeza virus (CTV) is the largest known plant RNA virus (ca. 20 Kb), with a plethora of isolates conventionally categorized into six main genotypic groups (T36, VT, T3, RB, T68, T30). Each group includes many isolates with different phenotype profiles. Several techniques and protocols, mostly based on RT-PCR analysis of different regions of specific genes, have been developed for managing the diseases caused by CTV. However, more accurate genomic information would help to plan a correct strategy. This chapter describes a pilot protocol based on a sequential multiplex RT-PCR reaction and microarray hybridization in a miniaturized silicon lab-on-chip (LoC) device. The system comprises a set of 12 primers and 44 probes (× 2 replicates), designed on variable genomic regions of 6 genes: 5'UTR, ORF1a, ORF1b (RdRp), p33, p20, and p23. The system can rapidly analyze any genotype diversity associated with field isolates and distinguish the endemic from the non-endemic isolates. The identification of CTV strains is based on a number of probe hybridizations, which varies according to the genotypes present in the isolates and the differences among the genotypes.
Collapse
Affiliation(s)
| | - Antonino F Catara
- Formerly, Department of Phytosanitary Sciences, University of Catania, Catania, Italy
- Science and Technology Park of Sicily, Catania, Italy
| | - Grazia Licciardello
- Consiglio per la Ricerca in agricoltura e l'analisi dell'Economia Agraria (CREA), Centro di Olivicoltura, Frutticoltura e Agrumicoltura (CREA-OFA), Acireale (Catania), Italy
| |
Collapse
|
6
|
Krejmer-Rabalska M, Rabalski L, Lobo de Souza M, Moore SD, Szewczyk B. New Method for Differentiation of Granuloviruses (Betabaculoviruses) Based on Multitemperature Single Stranded Conformational Polymorphism. Int J Mol Sci 2017; 19:ijms19010083. [PMID: 29283392 PMCID: PMC5796033 DOI: 10.3390/ijms19010083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/20/2017] [Accepted: 12/23/2017] [Indexed: 12/15/2022] Open
Abstract
Baculoviruses have been used as biopesticides for decades. Recently, due to the excessive use of chemical pesticides there is a need for finding new agents that may be useful in biological protection. Sometimes few isolates or species are discovered in one host. In the past few years, many new baculovirus species have been isolated from environmental samples, thoroughly characterized and thanks to next generation sequencing methods their genomes are being deposited in the GenBank database. Next generation sequencing (NGS) methodology is the most certain way of detection, but it has many disadvantages. During our studies, we have developed a method based on Polymerase chain reaction (PCR) followed by Multitemperature Single Stranded Conformational Polymorphism (MSSCP) which allows for distinguishing new granulovirus isolates in only a few hours and at low-cost. On the basis of phylogenetic analysis of betabaculoviruses, representative species have been chosen. The alignment of highly conserved genes—granulin and late expression factor-9, was performed and the degenerate primers were designed to amplify the most variable, short DNA fragments flanked with the most conserved sequences. Afterwards, products of PCR reaction were analysed by MSSCP technique. In our opinion, the proposed method may be used for screening of new isolates derived from environmental samples.
Collapse
Affiliation(s)
- Martyna Krejmer-Rabalska
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, 80-807 Gdansk, Poland.
| | - Lukasz Rabalski
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, 80-807 Gdansk, Poland.
| | - Marlinda Lobo de Souza
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estacao Biológica, 70770-900 Brasilia, Brazil.
| | - Sean D Moore
- Citrus Research International (CRI), P.O. Box 20285, Humewood 6013, Port Elizabeth, South Africa.
- Department of Zoology and Entomology, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa.
| | - Boguslaw Szewczyk
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, 80-807 Gdansk, Poland.
| |
Collapse
|
7
|
Xiao C, Yao RX, Li F, Dai SM, Licciardello G, Catara A, Gentile A, Deng ZN. Population structure and diversity of citrus tristeza virus (CTV) isolates in Hunan province, China. Arch Virol 2016; 162:409-423. [PMID: 27771790 DOI: 10.1007/s00705-016-3089-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/22/2016] [Indexed: 12/01/2022]
Abstract
Stem-pitting (SP) is the main type of citrus tristeza virus (CTV) that causes severe damage to citrus trees, especially those of sweet orange, in Hunan province, China. Understanding the local CTV population structure should provide clues for effective mild strain cross-protection (MSCP) of the SP strain of CTV. In this study, markers for the p23 gene, multiple molecular markers (MMMs), and sequence analysis of the three silencing suppressor genes (p20, p23 and p25) were employed to analyze the genetic diversity and genotype composition of the CTV population based on 51 CTV-positive samples collected from 14 citrus orchards scattered around six major citrus-growing areas of Hunan. The results indicated that the CTV population structure was extremely complex and that infection was highly mixed. In total, p23 gene markers resulted in six profiles, and MMMs demonstrated 25 profiles. The severe VT and T3 types appeared to be predominantly associated with SP, while the mild T30 and RB types were related to asymptomatic samples. Based on phylogenetic analysis of the amino acid sequences of p20, p23 and p25, 19 representative CTV samples were classified into seven recently established CTV groups and a potentially novel one. A high level of genetic diversity, as well as potential recombination, was revealed among different CTV isolates. Five pure SP severe and two pure mild strains were identified by genotype composition analysis. Taken together, the results update the genetic diversity of CTV in Hunan with the detection of one possible novel strain, and this information might be applicable for the selection of appropriate mild CTV strains for controlling citrus SP disease through cross-protection.
Collapse
Affiliation(s)
- Cui Xiao
- Horticulture and Landscape College, Hunan Agricultural University, Changsha, 410128, China
| | - Run-Xian Yao
- Horticulture and Landscape College, Hunan Agricultural University, Changsha, 410128, China
| | - Fang Li
- Horticulture and Landscape College, Hunan Agricultural University, Changsha, 410128, China
| | - Su-Ming Dai
- Horticulture and Landscape College, Hunan Agricultural University, Changsha, 410128, China.,Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Grazia Licciardello
- Parco Scientifico e Tecnologico della Sicilia, z.i., Stradale Lancia 57, 95121, Catania, Italy
| | - Antonino Catara
- Parco Scientifico e Tecnologico della Sicilia, z.i., Stradale Lancia 57, 95121, Catania, Italy
| | - Alessandra Gentile
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università degli Studi di Catania, Piazza Università 2, 95131, Catania, Italy.
| | - Zi-Niu Deng
- Horticulture and Landscape College, Hunan Agricultural University, Changsha, 410128, China. .,Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
8
|
Licciardello G, Scuderi G, Ferraro R, Giampetruzzi A, Russo M, Lombardo A, Raspagliesi D, Bar-Joseph M, Catara A. Deep sequencing and analysis of small RNAs in sweet orange grafted on sour orange infected with two citrus tristeza virus isolates prevalent in Sicily. Arch Virol 2015; 160:2583-9. [PMID: 26175068 DOI: 10.1007/s00705-015-2516-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/29/2015] [Indexed: 01/30/2023]
Abstract
Two representative isolates of a citrus tristeza virus population in Sicily, SG29 (aggressive) and Bau282 (mild), were sequenced via viral small RNAs (vsRNA) produced in budlings of sweet orange grafted on sour orange. Phylogenetic relationships with Mediterranean and exotic isolates revealed that SG29 clustered within the "VT-Asian" subtype, whereas Bau282 belonged to the cluster T30. The study confirms that molecular data need to be integrated with bio-indexing in order to obtain adequate information for risk assessment.
Collapse
Affiliation(s)
- Grazia Licciardello
- Parco Scientifico e Tecnologico della Sicilia, z.i. Blocco Palma I, Str. le Lancia 57, 95121, Catania, Italy.
| | - Giuseppe Scuderi
- Parco Scientifico e Tecnologico della Sicilia, z.i. Blocco Palma I, Str. le Lancia 57, 95121, Catania, Italy
| | - Rosario Ferraro
- Parco Scientifico e Tecnologico della Sicilia, z.i. Blocco Palma I, Str. le Lancia 57, 95121, Catania, Italy
| | - Annalisa Giampetruzzi
- CNR, Institute for Sustainable Plant Protection, Via Amendola 165/A, 70126, Bari, Italy
| | - Marcella Russo
- Parco Scientifico e Tecnologico della Sicilia, z.i. Blocco Palma I, Str. le Lancia 57, 95121, Catania, Italy
| | - Alessandro Lombardo
- Parco Scientifico e Tecnologico della Sicilia, z.i. Blocco Palma I, Str. le Lancia 57, 95121, Catania, Italy
| | - Domenico Raspagliesi
- Parco Scientifico e Tecnologico della Sicilia, z.i. Blocco Palma I, Str. le Lancia 57, 95121, Catania, Italy
| | | | - Antonino Catara
- Parco Scientifico e Tecnologico della Sicilia, z.i. Blocco Palma I, Str. le Lancia 57, 95121, Catania, Italy
| |
Collapse
|
9
|
Choudhary N, Roy A, Govindarajulu A, Nakhla M, Levy L, Brlansky R. Production of monoclonal antibodies for detection of Citrus leprosis virus C in enzyme-linked immuno-assays and immunocapture reverse transcription-polymerase chain reaction. J Virol Methods 2014; 206:144-9. [DOI: 10.1016/j.jviromet.2014.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/06/2014] [Accepted: 06/10/2014] [Indexed: 11/29/2022]
|
10
|
Di Carli M, Benvenuto E, Donini M. Recent insights into plant-virus interactions through proteomic analysis. J Proteome Res 2012; 11:4765-80. [PMID: 22954327 DOI: 10.1021/pr300494e] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plant viruses represent a major threat for a wide range of host species causing severe losses in agricultural practices. The full comprehension of mechanisms underlying events of virus-host plant interaction is crucial to devise novel plant resistance strategies. Until now, functional genomics studies in plant-virus interaction have been limited mainly on transcriptomic analysis. Only recently are proteomic approaches starting to provide important contributions to this area of research. Classical two-dimensional electrophoresis (2-DE) coupled to mass spectrometry (MS) is still the most widely used platform in plant proteome analysis, although in the last years the application of quantitative "second generation" proteomic techniques (such as differential in gel electrophoresis, DIGE, and gel-free protein separation methods) are emerging as more powerful analytical approaches. Apparently simple, plant-virus interactions reveal a really complex pathophysiological context, in which resistance, defense and susceptibility, and direct virus-induced reactions interplay to trigger expression responses of hundreds of genes. Given that, this review is specifically focused on comparative proteome-based studies on pathogenesis of several viral genera, including some of the most important and widespread plant viruses of the genus Tobamovirus, Sobemovirus, Cucumovirus and Potyvirus. In all, this overview reveals a widespread repression of proteins associated with the photosynthetic apparatus, while energy metabolism/protein synthesis and turnover are typically up-regulated, indicating a major redirection of cell metabolism. Other common features include the modulation of metabolisms concerning sugars, cell wall, and reactive oxigen species as well as pathogenesis-related (PR) proteins. The fine-tuning between plant development and antiviral defense mechanisms determines new patterns of regulation of common metabolic pathways. By offering a 360-degree view of protein modulation, all proteomic tools reveal the extraordinary intricacy of mechanisms with which a simple viral genome perturbs the plant cell molecular networks. This "omic" approach, while providing a global perspective and useful information to the understanding of the plant host-virus interactome, may possibly reveal protein targets/markers useful in the design of future diagnosis and/or plant protection strategies.
Collapse
Affiliation(s)
- Mariasole Di Carli
- ENEA, Laboratorio Biotecnologie, UT BIORAD-FARM, Casaccia Research Center, Via Anguillarese 301, I-00123 Rome, Italy
| | | | | |
Collapse
|