1
|
Kim SM, Heo HR, Kim CS, Shin HH. Genetically engineered bacteriophages as novel nanomaterials: applications beyond antimicrobial agents. Front Bioeng Biotechnol 2024; 12:1319830. [PMID: 38725991 PMCID: PMC11079243 DOI: 10.3389/fbioe.2024.1319830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Bacteriophages, also known as phages, are viruses that replicate in bacteria and archaea. Phages were initially discovered as antimicrobial agents, and they have been used as therapeutic agents for bacterial infection in a process known as "phage therapy." Recently, phages have been investigated as functional nanomaterials in a variety of areas, as they can function not only as therapeutic agents but also as biosensors and tissue regenerative materials. Phages are nontoxic to humans, and they possess self-assembled nanostructures and functional properties. Additionally, phages can be easily genetically modified to display specific peptides or to screen for functional peptides via phage display. Here, we demonstrated the application of phage nanomaterials in the context of tissue engineering, sensing, and probing.
Collapse
Affiliation(s)
- Seong-Min Kim
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Hye Ryoung Heo
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Chang Sup Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Hwa Hui Shin
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| |
Collapse
|
2
|
Cao Y, Tao Z, Tian Y, Chen KE, Zhang L, Ren J, Xiao H, Zhang Q, Liu W, Cao C. A handheld contactless conductivity detector for monitoring the desalting of low-volume virus and cell samples. Biosens Bioelectron 2023; 237:115482. [PMID: 37406479 DOI: 10.1016/j.bios.2023.115482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/25/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023]
Abstract
Desalting of biosamples is crucial for analytical techniques intolerant to abundant salts. However, there is no simple tool to monitor the desalting of low-volume biosamples so far. Here we developed a handheld capacitively coupled contactless conductivity detector (hC4D) as a miniaturized device to measure the conductivity of 75 μL biosamples. Polyether-ether-ketone (PEEK) tubing was selected as the sample reservoir for sample loading via a pipette. Another pipetting of air pushed the sample solution out of the tubing to recollect the sample. Owing to the low sample consumption and easy sample recollection, hC4D is advantageous for testing expensive biosamples, such as viruses and cells. In addition, the whole process of sample injection, conductivity measurement, recollection, and calibration of conductivity can be completed within 1 min. To verify the feasibility of hC4D, we monitored the desalting progress of gel filtration (GF) of 200 μL blood samples, ultrafiltration (UF) of 300 μL virus samples, and dialysis of 7 mL cell samples. Three rounds of GF and UF completely removed the salts but led to poor sample recovery. In contrast, low concentrations of residual salts remained and better recovery was achieved after two rounds of GF and UF. We further utilized the hC4D to monitor the dialysis and tuned the salt concentration in the cell sample, such that we maintained the viability of cells in a low conductivity environment. These results indicated that hC4D is a promising tool for optimizing the desalting procedure of low-volume biosamples.
Collapse
Affiliation(s)
- Yiren Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhimin Tao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Youli Tian
- School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ke-Er Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Lu Zhang
- School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hua Xiao
- School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiang Zhang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weiwen Liu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Chengxi Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Kolosova EA, Viktorina OE, Chapoval AI, Shcherbakov DN. Search for Peptides Specifically Binding with the B7-2 Costimulatory Molecule. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s106816202106011x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract—
The interaction of B7-1/B7-2 ligands with CD28/CTLA-4 receptors plays a key role in the regulation of the immune response. The aim of this study was to find and study peptides that interact with the human B7-2 molecule. In the course of the work, three rounds of affinity selection were carried out and individual phage clones were selected, which include peptides with varying degrees of interaction with the coregulatory target B7-2. As a result of DNA sequencing of selected phages, nucleotide sequences encoding peptides that specifically bind to B7-2 were obtained. The identified peptides can be used as a basis for the development of immunotherapeutic drugs for regulating the immune response in the treatment of oncological diseases.
Collapse
|
4
|
Passaretti P, Khan I, Dafforn TR, Goldberg Oppenheimer P. Improvements in the production of purified M13 bacteriophage bio-nanoparticle. Sci Rep 2020; 10:18538. [PMID: 33122639 PMCID: PMC7596064 DOI: 10.1038/s41598-020-75205-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/13/2020] [Indexed: 11/17/2022] Open
Abstract
M13 bacteriophage is a well-established versatile nano-building block, which can be employed to produce novel self-assembled functional materials and devices. Sufficient production and scalability of the M13, often require a large quantity of the virus and thus, improved propagation methods characterised by high capacity and degree of purity are essential. Currently, the 'gold-standard' is represented by infecting Escherichia coli cultures, followed by precipitation with polyethylene glycol (PEG). However, this is considerably flawed by the accumulation of contaminant PEG inside the freshly produced stocks, potentially hampering the reactivity of the individual M13 filaments. Our study demonstrates the effectiveness of implementing an isoelectric precipitation procedure to reduce the residual PEG along with FT-IR spectroscopy as a rapid, convenient and effective analytic validation method to detect the presence of this contaminant in freshly prepared M13 stocks.
Collapse
Affiliation(s)
- Paolo Passaretti
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Inam Khan
- School of Metallurgy and Materials, University of Birmingham, Birmingham, B15 2TT, UK
| | - Timothy R Dafforn
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | | |
Collapse
|
5
|
Upadhya R, Kanagala MJ, Gormley AJ. Purifying Low-Volume Combinatorial Polymer Libraries with Gel Filtration Columns. Macromol Rapid Commun 2019; 40:e1900528. [PMID: 31737977 PMCID: PMC7990394 DOI: 10.1002/marc.201900528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/23/2019] [Indexed: 12/12/2022]
Abstract
Recent advances in oxygen-tolerant controlled/living radical polymer chemistry now enable efficient synthesis of diverse and combinatorial polymer libraries. While library synthesis has been dramatically simplified, equally efficient purification strategies for removal of small-molecule impurities are not yet established in high throughput settings. It is shown that gel filtration columns for chromatography frequently used in the protein science community are well suited for high throughput polymer purification. Using either single-use columns or gel filtration plates, the purification of 32 diverse polymers is demonstrated in a library with >95% removal of small molecule impurities and >85% polymer retention in a single purification step. Doing so replaces the typical procedure of polymer precipitation, which requires solvent optimization for each polymer in a complex library. Overall, this work raises awareness in the polymer science community that gel filtration is amenable to purification of large polymer libraries and can speed up the progress of combinatorial polymer chemistry.
Collapse
Affiliation(s)
- Rahul Upadhya
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Mythili J Kanagala
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Adam J Gormley
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| |
Collapse
|
6
|
Méndez-Scolari JE, Florentín-Pavía MM, Mujica MP, Rojas N, Sotelo PH. A qPCR Targeted Against the Viral Replication Origin Designed to Quantify Total Amount of Filamentous Phages and Phagemids. Indian J Microbiol 2019; 59:365-369. [PMID: 31388215 DOI: 10.1007/s12088-019-00798-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022] Open
Abstract
Filamentous bacteriophages are widely used in phage display technology. The most common quantification method is lysis plaque formation test (PFT). This technique has several disadvantages, and only quantifies infective phages and is not effective when phagemids are used. We developed a qPCR method directed against the M13 replication origin, which detects between 3.3 × 103 and 3.3 × 108 viral genome copies with a linearity of R 2 = 0.9998. Using this method we were able to observe a difference of approximately ten more phages than with the PFT. This difference was not due to the presence of a free genome, which suggests the presence of non-infective particles. Using a DNaseI treatment, we observed the presence of 30% to 40% of unpackaged genome in recombinant phage modified in PIII or PVIII. The qPCR method with a DNase I treatment is an efficient method to quantify the total amount of filamentous phages.
Collapse
Affiliation(s)
- J E Méndez-Scolari
- Dpto. de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus Universitario, San Lorenzo, Paraguay
| | - M M Florentín-Pavía
- Dpto. de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus Universitario, San Lorenzo, Paraguay
| | - M P Mujica
- Dpto. de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus Universitario, San Lorenzo, Paraguay
| | - N Rojas
- Dpto. de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus Universitario, San Lorenzo, Paraguay
| | - P H Sotelo
- Dpto. de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus Universitario, San Lorenzo, Paraguay
| |
Collapse
|
7
|
Peng X, Leal J, Mohanty R, Soto M, Ghosh D. Quantitative PCR of T7 Bacteriophage from Biopanning. J Vis Exp 2018. [PMID: 30320762 DOI: 10.3791/58165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
This protocol describes the use of quantitative PCR (qPCR) to enumerate T7 phages from phage selection experiments (i.e., "biopanning"). qPCR is a fluorescence-based approach to quantify DNA, and here, it is adapted to quantify phage genomes as a proxy for phage particles. In this protocol, a facile phage DNA preparation method is described using high-temperature heating without additional DNA purification. The method only needs small volumes of heat-treated phages and small volumes of the qPCR reaction. qPCR is high-throughput and fast, able to process and obtain data from a 96-well plate of reactions in 2-4 h. Compared to other phage enumeration approaches, qPCR is more time-efficient. Here, qPCR is used to enumerate T7 phages identified from biopanning against in vitro cystic fibrosis-like mucus model. The qPCR method can be extended to quantify T7 phages from other experiments, including other types of biopanning (e.g., immobilized protein binding, in vivo phage screening) and other sources (e.g., water systems or body fluids). In summary, this protocol can be modified to quantify any DNA-encapsulated viruses.
Collapse
Affiliation(s)
- Xiujuan Peng
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin
| | - Jasmim Leal
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin
| | - Rashmi Mohanty
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin
| | - Melissa Soto
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin
| | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin;
| |
Collapse
|
8
|
Wang Z, Wang W, Bu X, Wei Z, Geng L, Wu Y, Dong C, Li L, Zhang D, Yang S, Wang F, Lausted C, Hood L, Hu Z. Microarray based screening of peptide nano probes for HER2 positive tumor. Anal Chem 2015. [PMID: 26218790 DOI: 10.1021/acs.analchem.5b01588] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Peptides are excellent biointerface molecules and diagnostic probes with many advantages such as good penetration, short turnover time, and low cost. We report here an efficient peptide screening strategy based on in situ single bead sequencing on a microarray. Two novel peptides YLFFVFER (H6) and KLRLEWNR (H10) specifically binding to the tumor biomarker human epidermal growth factor receptor 2 (HER2) with aKD of 10(-8) M were obtained from a 10(5) library. Conjugated to nanoparticles, both the H6 and H10 probes showed specific accumulation in HER2-positive tumor tissues in xenografted mice by in vivo imaging.
Collapse
Affiliation(s)
| | | | | | | | | | - Yue Wu
- ‡Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing China, 100191
| | - Chengyan Dong
- ‡Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing China, 100191
| | - Liqiang Li
- ‡Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing China, 100191
| | | | | | - Fan Wang
- ‡Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing China, 100191
| | - Christopher Lausted
- §Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109, United States
| | - Leroy Hood
- §Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109, United States
| | - Zhiyuan Hu
- §Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109, United States.,∥Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing China, 102206
| |
Collapse
|
9
|
Dong D, Sutaria S, Hwangbo JY, Chen P. A simple and rapid method to isolate purer M13 phage by isoelectric precipitation. Appl Microbiol Biotechnol 2013; 97:8023-9. [PMID: 23807666 DOI: 10.1007/s00253-013-5049-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/06/2013] [Accepted: 06/09/2013] [Indexed: 11/25/2022]
Abstract
M13 virus (phage) has been extensively used in phage display technology and nanomaterial templating. Our research aimed to use M13 phage to template sulfur nanoparticles for making lithium ion batteries. Traditional methods for harvesting M13 phage from Escherichia coli employ polyethylene glycol (PEG)-based precipitation, and the yield is usually measured by plaque counting. With this method, PEG residue is present in the M13 phage pellet and is difficult to eliminate. To resolve this issue, a method based on isoelectric precipitation was introduced and tested. The isoelectric method resulted in the production of purer phage with a higher yield, compared to the traditional PEG-based method. There is no significant variation in infectivity of the phage prepared using isoelectric precipitation, and the dynamic light scattering data indirectly prove that the phage structure is not damaged by pH adjustment. To maximize phage production, a dry-weight yield curve of M13 phage for various culture times was produced. The yield curve is proportional to the growth curve of E. coli. On a 200-mL culture scale, 0.2 g L(-1) M13 phage (dry-weight) was produced by the isoelectric precipitation method.
Collapse
Affiliation(s)
- Dexian Dong
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| | | | | | | |
Collapse
|