1
|
Zhao X, Wang X, Yuan M, Zhang X, Yang X, Guan X, Li S, Ma J, Qiu HJ, Li Y. Identification of two novel T cell epitopes on the E2 protein of classical swine fever virus C-strain. Vet Microbiol 2023; 284:109814. [PMID: 37356277 DOI: 10.1016/j.vetmic.2023.109814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023]
Abstract
C-strain, also known as the HCLV strain, is a well-known live attenuated vaccine against classical swine fever (CSF), a devastating disease caused by classical swine fever virus (CSFV). Vaccination with C-strain induces a rapid onset of protection, which is associated with virus-specific gamma interferon (IFN-γ)-secreting CD8+ T cell responses. The E2 protein of CSFV is a major protective antigen. However, the T cell epitopes on the E2 protein remain largely unknown. In this study, eight overlapping nonapeptides of the E2 protein were predicted and synthesized to screen for potential T cell epitopes on the CSFV C-strain E2 protein. Molecular docking was performed on the candidate epitopes with the swine leukocyte antigen-1*0401. The analysis obtained two highly conserved T cell epitopes, 90STEEMGDDF98 and 331ATDRHSDYF339, which were further identified by enzyme-linked immunospot assay. Interestingly, the mutants deleting or substituting the epitopes are nonviable. Further analysis demonstrated that 90STEEMGDDF98 is crucial for the E2 homodimerization, while CSFV infection is significantly inhibited by the 331ATDRHSDYF339 peptide treatment. The two novel T cell epitopes can be used to design new vaccines that are able to provide rapid-onset protection.
Collapse
Affiliation(s)
- Xiaotian Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Xiao Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Mengqi Yuan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaoke Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiangyu Guan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shuwen Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jifei Ma
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China.
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Yongfeng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
2
|
Novel epitopes identified from Tembusu virus NS3 protein induce cytotoxic T lymphocyte response. Vet Microbiol 2022; 271:109477. [PMID: 35667314 DOI: 10.1016/j.vetmic.2022.109477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 11/23/2022]
Abstract
Since 2010, Tembusu virus (TMUV) has spread widely in China, causing huge economic losses to the poultry industry. Due to the infectious and zoonotic nature of flaviviruses, their potential threat to public health is of great concern. Cellular immune responses usually play a critical role in combating viral infections. To study the molecular basis of cell immunity induced by TMUV, 14 cytotoxic T lymphocyte (CTL) epitope peptides of TMUV antigen E, NS1 and NS3 were predicted by bioinformatics tools. Their abilities to induce cellular immune responses were determined by IFN-γ ELISpot assay, and 4 peptides were found to exhibit highly significant responses upon stimulation. In addition, the cytotoxic activity induced by the epitope peptides was assessed by lactate dehydrogenase (LDH) release assay. Finally, among these peptides, we identified two murine TMUV NS3-derived H-2d-restricted CTL epitopes in BALB/c mice, which could be used to further study of epitope vaccines against TMUV infection.
Collapse
|
3
|
Sangewar N, Waghela SD, Yao J, Sang H, Bray J, Mwangi W. Novel Potent IFN-γ-Inducing CD8 + T Cell Epitopes Conserved among Diverse Bovine Viral Diarrhea Virus Strains. THE JOURNAL OF IMMUNOLOGY 2021; 206:1709-1718. [PMID: 33762324 DOI: 10.4049/jimmunol.2001424] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/12/2021] [Indexed: 11/19/2022]
Abstract
Studies of immune responses elicited by bovine viral diarrhea virus (BVDV) vaccines have primarily focused on the characterization of neutralizing B cell and CD4+ T cell epitopes. Despite the availability of commercial vaccines for decades, BVDV prevalence in cattle has remained largely unaffected. There is limited knowledge regarding the role of BVDV-specific CD8+ T cells in immune protection, and indirect evidence suggests that they play a crucial role during BVDV infection. In this study, the presence of BVDV-specific CD8+ T cells that are highly cross-reactive in cattle was demonstrated. Most importantly, novel potent IFN-γ-inducing CD8+ T cell epitopes were identified from different regions of BVDV polyprotein. Eight CD8+ T cell epitopes were identified from the following structural BVDV Ags: Erns, E1, and E2 glycoproteins. In addition, from nonstructural BVDV Ags Npro, NS2-3, NS4A-B, and NS5A-B, 20 CD8+ T cell epitopes were identified. The majority of these IFN-γ-inducing CD8+ T cell epitopes were found to be highly conserved among more than 200 strains from BVDV-1 and -2 genotypes. These conserved epitopes were also validated as cross-reactive because they induced high recall IFN-γ+CD8+ T cell responses ex vivo in purified bovine CD8+ T cells isolated from BVDV-1- and -2-immunized cattle. Altogether, 28 bovine MHC class I-binding epitopes were identified from key BVDV Ags that can elicit broadly reactive CD8+ T cells against diverse BVDV strains. The data presented in this study will lay the groundwork for the development of a contemporary CD8+ T cell-based BVDV vaccine capable of addressing BVDV heterogeneity more effectively than current vaccines.
Collapse
Affiliation(s)
- Neha Sangewar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506; and
| | - Suryakant D Waghela
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843
| | - Jianxiu Yao
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506; and
| | - Huldah Sang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506; and
| | - Jocelyn Bray
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506; and
| |
Collapse
|
4
|
Li G, Teleki C, Wang T. Memory T Cells in Flavivirus Vaccination. Vaccines (Basel) 2018; 6:E73. [PMID: 30340377 PMCID: PMC6313919 DOI: 10.3390/vaccines6040073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/30/2022] Open
Abstract
Flaviviruses include many medically important viruses, such as Dengue virus (DENV), Japanese encephalitis (JEV), tick-borne encephalitis (TBEV), West Nile (WNV), yellow fever (YFV), and Zika viruses (ZIKV). Currently, there are licensed human vaccines for DENV, JEV, TBEV and YFV, but not for WNV or ZIKV. Memory T cells play a central role in adaptive immunity and are important for host protection during flavivirus infection. In this review, we discuss recent findings from animal models and clinical trials and provide new insights into the role of memory T cells in host protective immunity upon vaccination with the licensed flavivirus vaccines.
Collapse
Affiliation(s)
- Guangyu Li
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Cody Teleki
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
5
|
MA XIUMIN, ZHOU XIAOTAO, ZHU YUEJIE, LI YANHUA, WANG HONGYING, MAMUTI WULAMU, LI YUJIAO, WEN HAO, DING JIANBING. The prediction of T- and B-combined epitope and tertiary structure of the Eg95 antigen of Echinococcus granulosus.. Exp Ther Med 2013; 6:657-662. [PMID: 24137242 PMCID: PMC3786808 DOI: 10.3892/etm.2013.1187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 06/17/2013] [Indexed: 12/28/2022] Open
Abstract
Echinococcosis, also known as hydatid disease, is a type of zoonotic parasitic disease caused by the Echinococcus larvae infection. The disease is severely harmful to both humans and animals. Research and development of an epitope vaccine is crucial. To determine the dominant epitopes of the Eg95 antigen, the tertiary structure and the T- and B-combined epitope of the Eg95 protein for Echinococcus granulosus were predicted and analyzed in the present study. The tertiary structure of the Eg95 protein was predicted using the 3DLigandsite server and RasMol software. The T- and B-combined epitope of the Eg95 antigen was analyzed using the DNAStar (V5.0), IEDB, SYFPEITHI and BIMAS. Tertiary structure prediction results showed that there were potential epitopes in Eg95 antigen. Bioinformatics analysis revealed the T- and B-combined epitopes of Eg95 antigen. Four and six T- and B-combined epitopes induced immune responses in humans and mice. Additionally, four T- and B-combined epitopes induced immune responses in both humans and mice. The tertiary structure and T- and B-combined epitopes of the Eg95 protein were also determined. The results obtained in the present study may be beneficial in the investigation of Eg95 antigenicity and the development of dominant epitope vaccines.
Collapse
Affiliation(s)
- XIUMIN MA
- State Key Laboratory Incubation Base of Major Diseases in Xinjiang and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
- College of Basic Medicine of Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| | - XIAOTAO ZHOU
- College of Basic Medicine of Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| | - YUEJIE ZHU
- State Key Laboratory Incubation Base of Major Diseases in Xinjiang and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| | - YANHUA LI
- College of Basic Medicine of Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| | - HONGYING WANG
- College of Basic Medicine of Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| | - WULAMU MAMUTI
- College of Basic Medicine of Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| | - YUJIAO LI
- State Key Laboratory Incubation Base of Major Diseases in Xinjiang and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| | - HAO WEN
- State Key Laboratory Incubation Base of Major Diseases in Xinjiang and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| | - JIANBING DING
- State Key Laboratory Incubation Base of Major Diseases in Xinjiang and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
- National Clinical Research Base of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| |
Collapse
|