1
|
Kline A, Dean K, Kossik AL, Harrison JC, Januch JD, Beck NK, Zhou NA, Shirai JH, Boyle DS, Mitchell J, Meschke JS. Persistence of poliovirus types 2 and 3 in waste-impacted water and sediment. PLoS One 2022; 17:e0262761. [PMID: 35081146 PMCID: PMC8791527 DOI: 10.1371/journal.pone.0262761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/04/2022] [Indexed: 11/19/2022] Open
Abstract
Eradication of poliovirus (PV) is a global public health priority, and as clinical cases decrease, the role of environmental surveillance becomes more important. Persistence of PV and the environmental factors that influence it (such as temperature and sample type) are an important part of understanding and interpreting positive environmental surveillance samples. The objective of this study was to evaluate the persistence of poliovirus type 2 (PV2) and type 3 (PV3) in wastewater and sediment. Microcosms containing either 1) influent wastewater or 2) influent wastewater with a sediment matrix were seeded with either PV2 or PV3, and stored for up to 126 days at three temperatures (4°C, room temperature [RT], and 30°C). Active PV in the liquid of (1), and the sediment and liquid portions of (2) were sampled and quantified at up to 10 time points via plaque assay and RT-qPCR. A suite of 17 models were tested for best fit to characterize decay of PV2 and PV3 over time and determine the time points at which >90% (T90) and >99% (T99) reduction was reached. Linear models assessed the influence of experimental factors (matrix, temperature, virus type and method of detection) on the predicted T90 and T99 values. Results showed that when T90 was the dependent variable, virus type, matrix, and temperature significantly affected decay, and there was a clear interaction between the sediment matrix and temperature. When T99 was the dependent variable, only temperature and matrix type significantly influenced the decay metric. This study characterizes the persistence of both active and molecular PV2 and PV3 in relevant environmental conditions, and demonstrates that temperature and sediment both play important roles in PV viability. As eradication nears and clinical cases decrease, environmental surveillance and knowledge of PV persistence will play a key role in understanding the silent circulation in endemic countries.
Collapse
Affiliation(s)
- Allison Kline
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| | - Kara Dean
- Biosystems & Agricultural Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Alexandra L. Kossik
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| | - Joanna Ciol Harrison
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| | - James D. Januch
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| | - Nicola K. Beck
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| | - Nicolette A. Zhou
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| | - Jeffry H. Shirai
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| | | | - Jade Mitchell
- Biosystems & Agricultural Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - John Scott Meschke
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
2
|
Zhou NA, Fagnant-Sperati CS, Komen E, Mwangi B, Mukubi J, Nyangao J, Hassan J, Chepkurui A, Maina C, van Zyl WB, Matsapola PN, Wolfaardt M, Ngwana FB, Jeffries-Miles S, Coulliette-Salmond A, Peñaranda S, Shirai JH, Kossik AL, Beck NK, Wilmouth R, Boyle DS, Burns CC, Taylor MB, Borus P, Meschke JS. Feasibility of the Bag-Mediated Filtration System for Environmental Surveillance of Poliovirus in Kenya. FOOD AND ENVIRONMENTAL VIROLOGY 2020; 12:35-47. [PMID: 31679104 PMCID: PMC7052051 DOI: 10.1007/s12560-019-09412-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/15/2019] [Indexed: 05/24/2023]
Abstract
The bag-mediated filtration system (BMFS) was developed to facilitate poliovirus (PV) environmental surveillance, a supplement to acute flaccid paralysis surveillance in PV eradication efforts. From April to September 2015, environmental samples were collected from four sites in Nairobi, Kenya, and processed using two collection/concentration methodologies: BMFS (> 3 L filtered) and grab sample (1 L collected; 0.5 L concentrated) with two-phase separation. BMFS and two-phase samples were analyzed for PV by the standard World Health Organization poliovirus isolation algorithm followed by intratypic differentiation. BMFS samples were also analyzed by a cell culture independent real-time reverse transcription polymerase chain reaction (rRT-PCR) and an alternative cell culture method (integrated cell culture-rRT-PCR with PLC/PRF/5, L20B, and BGM cell lines). Sabin polioviruses were detected in a majority of samples using BMFS (37/42) and two-phase separation (32/42). There was statistically more frequent detection of Sabin-like PV type 3 in samples concentrated with BMFS (22/42) than by two-phase separation (14/42, p = 0.035), possibly due to greater effective volume assayed (870 mL vs. 150 mL). Despite this effective volume assayed, there was no statistical difference in Sabin-like PV type 1 and Sabin-like PV type 2 detection between these methods (9/42 vs. 8/42, p = 0.80 and 27/42 vs. 32/42, p = 0.18, respectively). This study demonstrated that BMFS can be used for PV environmental surveillance and established a feasible study design for future research.
Collapse
Affiliation(s)
- Nicolette A Zhou
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Christine S Fagnant-Sperati
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Evans Komen
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Road, P.O. Box 54628, Nairobi, 00200, Kenya
| | - Benlick Mwangi
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Road, P.O. Box 54628, Nairobi, 00200, Kenya
| | - Johnstone Mukubi
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Road, P.O. Box 54628, Nairobi, 00200, Kenya
| | - James Nyangao
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Road, P.O. Box 54628, Nairobi, 00200, Kenya
| | - Joanne Hassan
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Road, P.O. Box 54628, Nairobi, 00200, Kenya
| | - Agnes Chepkurui
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Road, P.O. Box 54628, Nairobi, 00200, Kenya
| | - Caroline Maina
- Kenya Ministry of Health, Afya House, Cathedral Road, P.O. Box 30016, Nairobi, 00100, Kenya
| | - Walda B van Zyl
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa
| | - Peter N Matsapola
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa
| | - Marianne Wolfaardt
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa
| | - Fhatuwani B Ngwana
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa
| | - Stacey Jeffries-Miles
- IHRC, Inc. (contracting agency to the Division of Viral Diseases, Centers for Diseases Control and Prevention, Atlanta, GA 30329, USA), 2 Ravinia Drive, Suite 1200, Atlanta, GA, 30329, USA
| | - Angela Coulliette-Salmond
- Division of Viral Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop H17-6, Atlanta, GA, 30329, USA
| | - Silvia Peñaranda
- Division of Viral Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop H17-6, Atlanta, GA, 30329, USA
| | - Jeffry H Shirai
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Alexandra L Kossik
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Nicola K Beck
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Robyn Wilmouth
- PATH, 2201 Westlake Ave, Suite 200, Seattle, WA, 98121, USA
| | - David S Boyle
- PATH, 2201 Westlake Ave, Suite 200, Seattle, WA, 98121, USA
| | - Cara C Burns
- Division of Viral Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop H17-6, Atlanta, GA, 30329, USA
| | - Maureen B Taylor
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa
| | - Peter Borus
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Road, P.O. Box 54628, Nairobi, 00200, Kenya
| | - John Scott Meschke
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA.
| |
Collapse
|
4
|
Mee ET, Minor PD, Martin J. High resolution identity testing of inactivated poliovirus vaccines. Vaccine 2015; 33:3533-41. [PMID: 26049003 PMCID: PMC4504004 DOI: 10.1016/j.vaccine.2015.05.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 12/02/2022]
Abstract
Identity testing is a critical step in the quality control process. Serological testing is the current approved method, but has certain limitations. Existing molecular methods (qPCR) provide information about small genomic regions. Random amplification and shotgun sequencing provide full genome coverage. Distinction of highly similar viruses, and manufacturer-specific differences is possible.
Background Definitive identification of poliovirus strains in vaccines is essential for quality control, particularly where multiple wild-type and Sabin strains are produced in the same facility. Sequence-based identification provides the ultimate in identity testing and would offer several advantages over serological methods. Methods We employed random RT-PCR and high throughput sequencing to recover full-length genome sequences from monovalent and trivalent poliovirus vaccine products at various stages of the manufacturing process. Results All expected strains were detected in previously characterised products and the method permitted identification of strains comprising as little as 0.1% of sequence reads. Highly similar Mahoney and Sabin 1 strains were readily discriminated on the basis of specific variant positions. Analysis of a product known to contain incorrect strains demonstrated that the method correctly identified the contaminants. Conclusion Random RT-PCR and shotgun sequencing provided high resolution identification of vaccine components. In addition to the recovery of full-length genome sequences, the method could also be easily adapted to the characterisation of minor variant frequencies and distinction of closely related products on the basis of distinguishing consensus and low frequency polymorphisms.
Collapse
Affiliation(s)
- Edward T Mee
- Division of Virology, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, South Mimms EN6 3QG, Hertfordshire, UK.
| | - Philip D Minor
- Division of Virology, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, South Mimms EN6 3QG, Hertfordshire, UK
| | - Javier Martin
- Division of Virology, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, South Mimms EN6 3QG, Hertfordshire, UK
| |
Collapse
|