1
|
Braitbard O, Roniger M, Bar-Sinai A, Rajchman D, Gross T, Abramovitch H, La Ferla M, Franceschi S, Lessi F, Naccarato AG, Mazzanti CM, Bevilacqua G, Hochman J. A new immunization and treatment strategy for mouse mammary tumor virus (MMTV) associated cancers. Oncotarget 2018; 7:21168-80. [PMID: 26934560 PMCID: PMC5008276 DOI: 10.18632/oncotarget.7762] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/24/2016] [Indexed: 12/20/2022] Open
Abstract
Mouse Mammary Tumor Virus (MMTV) causes mammary carcinoma or lymphoma in mice. An increasing body of evidence in recent years supports its involvement also in human sporadic breast cancer. It is thus of importance to develop new strategies to impair the development, growth and metastasis of MMTV-associated cancers. The signal peptide of the envelope precursor protein of this virus: MMTV-p14 (p14) is an excellent target for such strategies, due to unique characteristics distinct from its regular endoplasmic reticulum targeting function. These include cell surface expression in: murine cancer cells that harbor the virus, human breast cancer (MCF-7) cells that ectopically express p14, as well as cultured human cells derived from an invasive ductal breast carcinoma positive for MMTV sequences. These findings support its use in signal peptide-based immune targeting. Indeed, priming and boosting mice with p14 elicits a specific anti-signal peptide immune response sufficient for protective vaccination against MMTV-associated tumors. Furthermore, passive immunization using a combination of anti-p14 monoclonal antibodies or the transfer of T-cells from immunized mice (Adoptive Cell Transfer) is also therapeutically effective. With reports demonstrating involvement of MMTV in human breast cancer, we propose the immune-mediated targeting of p14 as a strategy for prevention, treatment and diagnosis of MMTV-associated cancers.
Collapse
Affiliation(s)
- Ori Braitbard
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maayan Roniger
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Allan Bar-Sinai
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dana Rajchman
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Gross
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hillel Abramovitch
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | - Generoso Bevilacqua
- FPS - Pisa Science Foundation, Pisa, Italy.,Department of Pathology, University of Pisa, Pisa, Italy
| | - Jacob Hochman
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|