1
|
Coll JM. Herpesvirus Infection Induces both Specific and Heterologous Antiviral Antibodies in Carp. Front Immunol 2018; 9:39. [PMID: 29416541 PMCID: PMC5787538 DOI: 10.3389/fimmu.2018.00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/05/2018] [Indexed: 12/18/2022] Open
Abstract
IgM antibody diversity induced by viral infection in teleost fish sera remains largely unexplored despite several studies performed on their transcript counterparts in lymphoid organs. Here, IgM binding to microarrays containing ~20,000 human proteins was used to study sera from carp (Cyprinus carpio) populations having high titers of viral neutralization in vitro after surviving an experimental infection with cyprinid herpes virus 3 (CyHV-3). The range of diversity of the induced antibodies was unexpectedly high, showing CyHV-3 infection-dependent, non-specific IgM-binding activity of a ~20-fold wider variety than that found in sera from healthy carp (natural antibodies) with no anti-CyHV-3 neutralization titers. An inverse correlation between the IgM-binding levels in healthy versus infection-survivor/healthy ratios suggests that an infection-dependent feed back-like mechanism may control such clonal expansion. Surprisingly, among the infection-expanded levels, not only specific anti-frgIICyHV-3 and anti-CyHV-3 IgM-binding antibodies but also antibodies recognizing recombinant fragment epitopes from heterologous fish rhabdoviruses were detected in infection-survivor carp sera. Some alternative explanations for these findings in lower vertebrates are discussed.
Collapse
Affiliation(s)
- Julio M Coll
- Departamento Biotecnología, Instituto Nacional Investigaciones y Tecnologías Agrarias y Alimentarias (INIA), Madrid, Spain
| |
Collapse
|
2
|
Bello-Perez M, Falco A, Medina-Gali R, Pereiro P, Encinar JA, Novoa B, Perez L, Coll J. Neutralization of viral infectivity by zebrafish c-reactive protein isoforms. Mol Immunol 2017; 91:145-155. [PMID: 28915434 DOI: 10.1016/j.molimm.2017.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 12/24/2022]
Abstract
This work explores the unexpected in vivo and in vitro anti-viral functions of the seven c-reactive protein (crp1-7) genes of zebrafish (Danio rerio). First results showed heterogeneous crp1-7 transcript levels in healthy wild-type zebrafish tissues and organs and how those levels heterogeneously changed not only after bacterial but also after viral infections, including those in adaptive immunity-deficient rag1-/- mutants. As shown by microarray hybridization and proteomic techniques, crp2/CRP2 and crp5/CRP5 transcripts/proteins were among the most modulated during in vivo viral infection situations including the highest responses in the absence of adaptive immunity. In contrast crp1/CRP1/and crp7/CRP7 very often remained unmodulated. All evidences suggested that zebrafish crp2-6/CRP2-6 may have in vivo anti-viral activities in addition to their well known anti-bacterial and/or physiological functions in mammalians. Confirming those expectations, in vitro neutralization and in vivo protection against spring viremia carp virus (SVCV) infections were demonstrated by crp2-6/CRP2-6 using crp1-7 transfected and/or CRP1-7-enriched supernatant-treated fish cells and crp2-5-injected one-cell stage embryo eggs, respectively. All these findings discovered a crp1-7/CRP1-7 primitive anti-viral functional diversity.These findings may help to study similar functions on the one-gene-coded human CRP, which is widely used as a clinical biomarker for bacterial infections, tissue inflammation and coronary heart diseases.
Collapse
Affiliation(s)
- Melissa Bello-Perez
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández (IBMC-UMH). Elche, Spain.
| | - Alberto Falco
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández (IBMC-UMH). Elche, Spain.
| | - Regla Medina-Gali
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández (IBMC-UMH). Elche, Spain.
| | | | - Jose Antonio Encinar
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández (IBMC-UMH). Elche, Spain.
| | | | - Luis Perez
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández (IBMC-UMH). Elche, Spain.
| | - Julio Coll
- Instituto Nacional Investigaciones y Tecnologías Agrarias y Alimentarias, Dpto. Biotecnología. INIA. Madrid, Spain.
| |
Collapse
|
3
|
Estepa A, Coll J. Inhibition of SERPINe1 reduces rhabdoviral infections in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2015; 47:264-270. [PMID: 26363229 PMCID: PMC7185853 DOI: 10.1016/j.fsi.2015.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/07/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
While exploring the molecular mechanisms behind the fin hemorrhages that follow zebrafish (Danio rerio) early infection with viral haemorrhagic septicemia virus (VHSV), we discovered that most serpin (serine protease inhibitor) gene transcripts were upregulated, except those of serpine1. Surprisingly, only SERPINe1-derived 14-mer peptide and low molecular weight drugs targeting SERPINe1 (i.e. tannic acid, EGCG, tiplaxtinin) inhibited in vitro infections not only of VHSV, but also of other fish rhabdoviruses such as infectious hematopoietic necrosis virus (IHNV) and spring viremia carp virus (SVCV). While the mechanisms that inhibited rhabdoviral infections remain speculative, these and other results suggested that SERPINEe1-derived peptide specifically targeted viral infectivity rather than virions. Practical applications might be developed from these studies since preliminary evidences showed that tannic acid could be used to reduce VHSV-caused mortalities. These studies are an example of how the identification of host genes targeted by viral infections using microarrays might facilitate the identification of novel prevention drugs in aquaculture and illuminate viral infection mechanisms.
Collapse
Affiliation(s)
- Amparo Estepa
- Universidad Miguel Hernández, UMH-IBMC, 03202 Elche, Spain.
| | - Julio Coll
- Instituto Nacional Investigaciones y Tecnologías Agrarias y Alimentarias, Dpto. Biotecnología. INIA. Crt. La Coruña, Km. 7, 28040 Madrid, Spain.
| |
Collapse
|
4
|
Kavaliauskis A, Arnemo M, Kim SH, Ulanova L, Speth M, Novoa B, Dios S, Evensen Ø, Griffiths GW, Gjøen T. Use of Poly(I:C) Stabilized with Chitosan As a Vaccine-Adjuvant Against Viral Hemorrhagic Septicemia Virus Infection in Zebrafish. Zebrafish 2015; 12:421-31. [PMID: 26509227 DOI: 10.1089/zeb.2015.1126] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is an urgent need for more efficient viral vaccines in finfish aquaculture worldwide. Here, we report the use of poly(I:C) stabilized with chitosan as an adjuvant for development of better finfish vaccines. The adjuvant was co-injected with inactivated viral hemorrhagic septicemia virus (VHSV) (CSpIC+iV vaccine) in adult zebrafish and its efficiency in protection against VHSV infection was compared to a live, attenuated VHS virus vaccine (aV). Both free and stabilized poly(I:C) were strong inducers of an antiviral state, measured by transcriptional activation of the genes of viral sensors: toll-like receptors, interferons, and interferon-stimulated genes, such as MXa within 48 h after injection. Both the CSpIC+iV and the aV formulations provided a significant protection against VHSV-induced mortality. However, when plasma from survivors was tested for neutralizing antibodies in an in vitro protection assay, we could not demonstrate any protective effect. On the contrary, plasma from aV vaccinated fish enhanced cytopathic effects, indicating that antibody-dependent entry may play a role in this system. Our results show that poly(I:C) is a promising candidate as an adjuvant for fish vaccination against viral pathogens, and that the zebrafish is a promising model for aquaculture-relevant vaccination studies.
Collapse
Affiliation(s)
- Arturas Kavaliauskis
- 1 Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo , Oslo, Norway
| | - Marianne Arnemo
- 1 Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo , Oslo, Norway
| | - Sung-Hyun Kim
- 2 Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences , Oslo, Norway
| | - Lilia Ulanova
- 3 Department of Biosciences, University of Oslo , Oslo, Norway
| | - Martin Speth
- 3 Department of Biosciences, University of Oslo , Oslo, Norway
| | | | - Sonia Dios
- 4 Institute of Marine Research, CSIC , Vigo, Spain
| | - Øystein Evensen
- 2 Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences , Oslo, Norway
| | | | - Tor Gjøen
- 1 Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo , Oslo, Norway
| |
Collapse
|
5
|
Estepa A, Coll J. Innate Multigene Family Memories Are Implicated in the Viral-Survivor Zebrafish Phenotype. PLoS One 2015; 10:e0135483. [PMID: 26270536 PMCID: PMC4535885 DOI: 10.1371/journal.pone.0135483] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/22/2015] [Indexed: 11/18/2022] Open
Abstract
Since adaptive features such as memory were discovered in mammalian innate immunity, interest in the immunological status of primitive vertebrates after infections has grown. In this context, we used zebrafish (Danio rerio), a primitive vertebrate species suited to molecular and genetic studies to explore transcriptional memories of the immune system in long-term survivors of viral haemorrhagic septicemia virus infections. Immune-gene targeted microarrays designed in-house, multipath genes, gene set enrichment, and leading-edge analysis, reveal unexpected consistent correlations between the viral-survivor phenotype and several innate multigene families. Thus, here we describe in survivors of infections the upregulation of the multigene family of proteasome subunit macropains, zebrafish-specific novel gene sets, mitogen activated protein kinases, and epidermal growth factor. We also describe the downregulation of the multigene families of c-reactive proteins, myxovirus-induced proteins and novel immunoglobulin-type receptors. The strength of those immunological memories was reflected by the exceptional similarity of the transcriptional profiles of survivors before and after re-infection compared with primary infected fish. On the other hand, the high levels of neutralizing antibodies in the blood plasma of survivors contrasted with the depletion of transcripts specific for most cell types present in lymphoid organs. Therefore, long-term survivors maintained unexpected molecular/cellular memories of previous viral encounters by modulating the expression levels of innate multigene families as well as having specific adaptive antibodies. The implications of the so-called "trained immunity" for future research in this field are also discussed.
Collapse
Affiliation(s)
- Amparo Estepa
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche (UMH), Alicante, Spain
| | - Julio Coll
- Department of Biotechnology, Instituto Nacional Investigaciones Agrarias (INIA), Madrid, Spain
| |
Collapse
|
6
|
Transcriptome analysis of rainbow trout in response to non-virion (NV) protein of viral haemorrhagic septicaemia virus (VHSV). Appl Microbiol Biotechnol 2015; 99:1827-43. [DOI: 10.1007/s00253-014-6366-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/22/2014] [Accepted: 12/25/2014] [Indexed: 12/25/2022]
|
7
|
Levraud JP, Palha N, Langevin C, Boudinot P. Through the looking glass: witnessing host-virus interplay in zebrafish. Trends Microbiol 2014; 22:490-7. [PMID: 24865811 DOI: 10.1016/j.tim.2014.04.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/27/2014] [Accepted: 04/30/2014] [Indexed: 12/21/2022]
Abstract
Host-pathogen interactions can be very complex at all scales; understanding organ- or organism-level events require in vivo approaches. Besides traditional host models such as mice, the zebrafish offers an attractive cocktail of optical accessibility and genetic tractability, blended with a vertebrate-type immunity, where innate responses can easily be separated from adaptive ones. Applied to viral infections, this model has revealed unexpected idiosyncrasies among organs, which we believe may apply to the human situation. We also argue that the dynamic analysis of virus spread and immune response in zebrafish make this model particularly well suited to the exploration of the concept of infection tolerance and resistance in relation to viral diseases.
Collapse
Affiliation(s)
- Jean-Pierre Levraud
- Institut Pasteur, Macrophages et Développement de l'Immunité, Paris, France; Centre National de la Recherche Scientifique (CNRS), URA 2578, Paris, France.
| | - Nuno Palha
- Institut Pasteur, Macrophages et Développement de l'Immunité, Paris, France; Centre National de la Recherche Scientifique (CNRS), URA 2578, Paris, France
| | - Christelle Langevin
- Institut National de la Recherche Agronomique (INRA), Virologie et Immunologie Moléculaire, Jouy-en-Josas, France
| | - Pierre Boudinot
- Institut National de la Recherche Agronomique (INRA), Virologie et Immunologie Moléculaire, Jouy-en-Josas, France
| |
Collapse
|