1
|
Hung CT, Haas GD, Watkinson RE, Chiu HP, Kowdle S, Stevens CS, Park A, Wohlschlegel JA, Thibault PA, Lee B. Paramyxovirus matrix proteins modulate host cell translation via exon-junction complex interactions in the cytoplasm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611502. [PMID: 39282406 PMCID: PMC11398453 DOI: 10.1101/2024.09.05.611502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Viruses have evolved myriad strategies to exploit the translation machinery of host cells to potentiate their replication. However, how paramyxovirus (PMVs) modulate cellular translation for their own benefit has not been systematically examined. Utilizing puromycylation labeling, overexpression of individual viral genes, and infection with wild-type virus versus its gene-deleted counterpart, we found that PMVs significantly inhibit host cells' nascent peptide synthesis during infection, with the viral matrix being the primary contributor to this effect. Using the rNiV-NPL replicon system, we discovered that the viral matrix enhances viral protein translation without affecting viral mRNA transcription and suppresses host protein expression at the translational level. Polysome profile analysis revealed that the HPIV3 matrix promotes the association of viral mRNAs with ribosomes, thereby enhancing their translation efficiency during infection. Intriguingly, our NiV-Matrix interactome identified the core exon-junction complex (cEJC), critical for mRNA biogenesis, as a significant component that interacts with the paramyxoviral matrix predominantly in the cytoplasm. siRNA knockdown of eIF4AIII simulated the restriction of cellular functions by the viral matrix, leading to enhanced viral gene translation and a reduction in host protein synthesis. Moreover, siRNA depletion of cEJC resulted in a 2-3 log enhancement in infectious virus titer for various PMVs but not SARS-CoV-2, enterovirus D68, or influenza virus. Our findings characterize a host translational interference mechanism mediated by viral matrix and host cEJC interactions. We propose that the PMV matrix redirects ribosomes to translate viral mRNAs at the expense of host cell transcripts, enhancing viral replication, and thereby enhancing viral replication. These insights provide a deeper understanding of the molecular interactions between paramyxoviruses and host cells, highlighting potential targets for antiviral strategies.
Collapse
Affiliation(s)
- Chuan-Tien Hung
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Griffin D Haas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ruth E Watkinson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hsin-Ping Chiu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shreyas Kowdle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christian S Stevens
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Arnold Park
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Patricia A Thibault
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
2
|
Wang R, Cao X, Lu K, Chang Z, Dong X, Guo H, Wei X, Dang R, Wang J, Wang X, Xiao S, Liu H, Yang Z. Rescuing Newcastle disease virus with tag for screening viral-host interacting proteins based on highly efficient reverse genetics. Front Vet Sci 2024; 11:1418760. [PMID: 39100766 PMCID: PMC11294249 DOI: 10.3389/fvets.2024.1418760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
The interaction between viral proteins and host proteins plays a crucial role in the process of virus infecting cells. Tags such as HA, His, and Flag do not interfere with the function of fusion proteins and are commonly used to study protein-protein interactions. Adding these tags to viral proteins will address the challenge of the lack of antibodies for screening host proteins that interact with viral proteins during infection. Obtaining viruses with tagged fusion proteins is crucial. This study established a new reverse genetic system with T7 promoter and three plasmids, which efficiently rescued Newcastle disease virus (NDV) regardless of its ability to replicate in cells. Subsequently, using this system, NDV containing a HA-tagged structural protein and NDV carrying a unique tag on each structural protein were successfully rescued. These tagged viruses replicated normally and exhibited genetic stability. Based on tag antibodies, every NDV structural protein was readily detected and showed correct subcellular localization in infected cells. After infecting cells with NDV carrying HA-tagged M protein, several proteins interacting with the M protein during the infection process were screened using HA tag antibodies. The establishment of this system laid the foundation for comprehensive exploration of the interaction between NDV proteins and host proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Yangling, Xianyang, China
| |
Collapse
|
3
|
Duan Z, Zhang Q, Liu M, Hu Z. Multifunctionality of matrix protein in the replication and pathogenesis of Newcastle disease virus: A review. Int J Biol Macromol 2023; 249:126089. [PMID: 37532184 DOI: 10.1016/j.ijbiomac.2023.126089] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
As an important structural protein in virion morphogenesis, the matrix (M) protein of Newcastle disease virus (NDV) is demonstrated to be a nuclear-cytoplasmic trafficking protein and plays essential roles in viral assembly and budding. In recent years, increasing lines of evidence have indicated that the M protein has obvious influence on the pathotypes of NDV, and the interaction of M protein with cellular proteins is also closely associated with the replication and pathogenicity of NDV. Although substantial progress has been made in the past 40 years towards understanding the structure and function of NDV M protein, the available information is scattered. Therefore, this review article summarizes and updates the research progress on the structural feature, virulence and pathotype correlation, and nucleocytoplasmic transport mechanism of NDV M protein, as well as the functions of M protein and cellular protein interactions in M's intracellular localization, viral RNA synthesis and transcription, viral protein synthesis, viral immune evasion, and viral budding and release, which will provide an in-depth understanding of the biological functions of M protein in the replication and pathogenesis of NDV, and also contribute to the development of effective antiviral strategies aiming at blocking the early or late steps of NDV lifecycles.
Collapse
Affiliation(s)
- Zhiqiang Duan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China.
| | - Qianyong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Menglan Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Duan Z, Xing J, Shi H, Wang Y, Zhao C. The matrix protein of Newcastle disease virus inhibits inflammatory response through IRAK4/TRAF6/TAK1/NF-κB signaling pathway. Int J Biol Macromol 2022; 218:295-309. [PMID: 35872314 DOI: 10.1016/j.ijbiomac.2022.07.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/23/2022] [Accepted: 07/17/2022] [Indexed: 11/25/2022]
Abstract
The matrix (M) protein of several cytoplasmic RNA viruses has been reported to be an NF-κB pathway antagonist. However, the function and mechanism of NDV M protein antagonizing NF-κB activation remain largely unknown. In this study, we found that the expression levels of IRAK4, TRAF6, TAK1, and RELA/p65 were obviously reduced late in NDV infection. In addition, the cytoplasmic M protein rather than other viral proteins decreased the expression of these proteins in a dose-dependent manner. Further indepth analysis showed that the N-terminal 180 amino acids of M protein were not only responsible for the reduced expression of these proteins, but also responsible for the inhibition of NF-κB activation and nuclear translocation of RELA/p65, as well as the production of inflammatory cytokines. Moreover, small interference RNA-mediated knockdown of IRAK4 or overexpression of IRAK4 markedly enhanced or reduced NDV replication by decreasing or increasing inflammatory cytokines production through the IRAK4/TRAF6/TAK1/NF-κB signaling pathway. Strangely, there were no interactions detected between NDV M protein and IRAK4, TRAF6, TAK1 or RELA/p65. Our findings described here contribute to a better understanding of the innate immune antagonism function of M protein and the molecular mechanism underlying the replication and pathogenesis of NDV.
Collapse
Affiliation(s)
- Zhiqiang Duan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China.
| | - Jingru Xing
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Haiying Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Yanbi Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Caiqin Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
5
|
Clustered Lysine Residues of the Canine Distemper Virus Matrix Protein Regulate Membrane Association and Budding Activity. J Virol 2020; 95:JVI.01269-20. [PMID: 33028721 DOI: 10.1128/jvi.01269-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/03/2020] [Indexed: 01/06/2023] Open
Abstract
The canine distemper virus (CDV) matrix (M) protein is multifunctional; it orchestrates viral assembly and budding, drives the formation of virus-like particles (VLPs), regulates viral RNA synthesis, and may support additional functions. CDV M may assemble into dimers, where each protomer is constituted by N-terminal and C-terminal domains (NTD and CTD, respectively). Here, to investigate whether electrostatic interactions between CDV M and the plasma membrane (PM) may contribute to budding activity, selected surface-exposed positively charged lysine residues, which are located within a large basic patch of CTD, were replaced by amino acids with selected properties. We found that some M mutants harboring amino acids with neutral and positive charge (methionine and arginine, respectively) maintained full functionality, including proper interaction and localization with the PM as well as intact VLP and progeny virus production as demonstrated by employing a cell exit-complementation system. Conversely, while the overall structural integrity remained mostly unaltered, most of the nonconservative M variants (carrying a glutamic acid; negatively charged) exhibited a cytosolic phenotype secondary to the lack of interaction with the PM. Consequently, such M variants were entirely defective in VLP production and viral particle formation. Furthermore, the proteasome inhibitor bortezomib significantly reduced wild-type M-mediated VLP production. Nevertheless, in the absence of the compound, all engineered M lysine variants exhibited unaffected ubiquitination profiles, consistent with other residues likely involved in this functionally essential posttranslational modification. Altogether, our data identified multiple surface-exposed lysine residues located within a basic patch of CDV M-CTD, critically contributing to PM association and ensuing membrane budding activity.IMPORTANCE Although vaccines against some morbilliviruses exist, infections still occur, which can result in dramatic brain disease or fatal outcome. Postexposure prophylaxis with antivirals would support global vaccination campaigns. Unfortunately, there is no efficient antiviral drug currently approved. The matrix (M) protein of morbilliviruses coordinates viral assembly and egress through interaction with multiple cellular and viral components. However, molecular mechanisms supporting these functions remain poorly understood, which preclude the rationale design of inhibitors. Here, to investigate potential interactions between canine distemper virus (CDV) M and the plasma membrane (PM), we combined structure-guided mutagenesis of selected surface-exposed lysine residues with biochemical, cellular, and virological assays. We identified several lysines clustering in a basic patch microdomain of the CDV M C-terminal domain, which contributed to PM association and budding activity. Our findings provide novel mechanistic information of how morbilliviruses assemble and egress from infected cells, thereby delivering bases for future antiviral drug development.
Collapse
|
6
|
Duan Z, Han Y, Zhou L, Yuan C, Wang Y, Zhao C, Tang H, Chen J. Chicken bromodomain-containing protein 2 interacts with the Newcastle disease virus matrix protein and promotes viral replication. Vet Res 2020; 51:120. [PMID: 32962745 PMCID: PMC7509934 DOI: 10.1186/s13567-020-00846-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/10/2020] [Indexed: 12/23/2022] Open
Abstract
Bromodomain-containing protein 2 (BRD2) is a nucleus-localized serine-threonine kinase that plays pivotal roles in the transcriptional control of diverse genes. In our previous study, the chicken BRD2 (chBRD2) protein was found to interact with the Newcastle disease virus (NDV) matrix (M) protein using a yeast two-hybrid screening system, but the role of the chBRD2 protein in the replication of NDV remains unclear. In this study, we first confirmed the interaction between the M protein and chBRD2 protein using fluorescence co-localization, co-immunoprecipitation and pull-down assays. Intracellular binding studies indicated that the C-terminus (aa 264-313) of the M protein and the extra-terminal (ET) domain (aa 619-683) of the chBRD2 protein were responsible for interactions with each other. Interestingly, although two amino acids (T621 and S649) found in the chBRD2/ET domain were different from those in the human BRD2/ET domain and in that of other mammals, they did not disrupt the BRD2-M interaction or the chBRD2-M interaction. In addition, we found that the transcription of the chBRD2 gene was obviously decreased in both NDV-infected cells and pEGFP-M-transfected cells in a dose-dependent manner. Moreover, small interfering RNA-mediated knockdown of chBRD2 or overexpression of chBRD2 remarkably enhanced or reduced NDV replication by upregulating or downregulating viral RNA synthesis and transcription, respectively. Overall, we demonstrate for the first time that the interaction of the M protein with the chBRD2 protein in the nucleus promotes NDV replication by downregulating chBRD2 expression and facilitating viral RNA synthesis and transcription. These results will provide further insight into the biological functions of the M protein in the replication of NDV.
Collapse
Affiliation(s)
- Zhiqiang Duan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China. .,College of Animal Science, Guizhou University, Jiaxiu South Road, Huaxi District, Guiyang, 550025, Guizhou, China.
| | - Yifan Han
- College of Animal Science, Guizhou University, Jiaxiu South Road, Huaxi District, Guiyang, 550025, Guizhou, China
| | - Lei Zhou
- College of Animal Science, Guizhou University, Jiaxiu South Road, Huaxi District, Guiyang, 550025, Guizhou, China
| | - Chao Yuan
- College of Animal Science, Guizhou University, Jiaxiu South Road, Huaxi District, Guiyang, 550025, Guizhou, China
| | - Yanbi Wang
- College of Animal Science, Guizhou University, Jiaxiu South Road, Huaxi District, Guiyang, 550025, Guizhou, China
| | - Caiqin Zhao
- College of Animal Science, Guizhou University, Jiaxiu South Road, Huaxi District, Guiyang, 550025, Guizhou, China
| | - Hong Tang
- College of Animal Science, Guizhou University, Jiaxiu South Road, Huaxi District, Guiyang, 550025, Guizhou, China
| | - Jiaqi Chen
- College of Animal Science, Guizhou University, Jiaxiu South Road, Huaxi District, Guiyang, 550025, Guizhou, China
| |
Collapse
|
7
|
Duan Z, Xu H, Ji X, Zhao J, Xu H, Hu Y, Deng S, Hu S, Liu X. Importin α5 negatively regulates importin β1-mediated nuclear import of Newcastle disease virus matrix protein and viral replication and pathogenicity in chicken fibroblasts. Virulence 2018. [PMID: 29532715 PMCID: PMC5955436 DOI: 10.1080/21505594.2018.1449507] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The matrix (M) protein of Newcastle disease virus (NDV) is demonstrated to localize in the nucleus via intrinsic nuclear localization signal (NLS), but cellular proteins involved in the nuclear import of NDV M protein and the role of M's nuclear localization in the replication and pathogenicity of NDV remain unclear. In this study, importin β1 was screened to interact with NDV M protein by yeast two-hybrid screening. This interaction was subsequently confirmed by co-immunoprecipitation and pull-down assays. In vitro binding studies indicated that the NLS region of M protein and the amino acids 336–433 of importin β1 that belonged to the RanGTP binding region were important for binding. Importantly, a recombinant virus with M/NLS mutation resulted in a pathotype change of NDV and attenuated viral replication and pathogenicity in chicken fibroblasts and SPF chickens. In agreement with the binding data, nuclear import of NDV M protein in digitonin-permeabilized HeLa cells required both importin β1 and RanGTP. Interestingly, importin α5 was verified to interact with M protein through binding importin β1. However, importin β1 or importin α5 depletion by siRNA resulted in different results, which showed the obviously cytoplasmic or nuclear accumulation of M protein and the remarkably decreased or increased replication ability and pathogenicity of NDV in chicken fibroblasts, respectively. Our findings therefore demonstrate for the first time the nuclear import mechanism of NDV M protein and the negative regulation role of importin α5 in importin β1-mediated nuclear import of M protein and the replication and pathogenicity of a paramyxovirus.
Collapse
Affiliation(s)
- Zhiqiang Duan
- a Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education , Guizhou University , Guiyang , China.,b College of Animal Science , Guizhou University , Guiyang , China
| | - Haixu Xu
- c Key Laboratory of Animal Infectious Diseases of Ministry of Agriculture , Yangzhou University , Yangzhou , China
| | - Xinqin Ji
- a Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education , Guizhou University , Guiyang , China.,b College of Animal Science , Guizhou University , Guiyang , China
| | - Jiafu Zhao
- a Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education , Guizhou University , Guiyang , China.,b College of Animal Science , Guizhou University , Guiyang , China
| | - Houqiang Xu
- a Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education , Guizhou University , Guiyang , China.,b College of Animal Science , Guizhou University , Guiyang , China
| | - Yan Hu
- b College of Animal Science , Guizhou University , Guiyang , China
| | - Shanshan Deng
- b College of Animal Science , Guizhou University , Guiyang , China
| | - Shunlin Hu
- c Key Laboratory of Animal Infectious Diseases of Ministry of Agriculture , Yangzhou University , Yangzhou , China
| | - Xiufan Liu
- c Key Laboratory of Animal Infectious Diseases of Ministry of Agriculture , Yangzhou University , Yangzhou , China
| |
Collapse
|
8
|
Chu Z, Wang C, Tang Q, Shi X, Gao X, Ma J, Lu K, Han Q, Jia Y, Wang X, Adam FEA, Liu H, Xiao S, Wang X, Yang Z. Newcastle Disease Virus V Protein Inhibits Cell Apoptosis and Promotes Viral Replication by Targeting CacyBP/SIP. Front Cell Infect Microbiol 2018; 8:304. [PMID: 30234028 PMCID: PMC6130229 DOI: 10.3389/fcimb.2018.00304] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/07/2018] [Indexed: 11/13/2022] Open
Abstract
Newcastle disease virus (NDV) has been classified by the World Organization for Animal Health (OIE) as a notable disease-causing virus, and this virus has the ability to infect a wide range of birds. V protein is a non-structural protein of NDV. V protein has been reported to inhibit cell apoptosis (Park et al., 2003a) and promote viral replication (Huang et al., 2003), however, the mechanisms of action of V protein have not been elucidated. In the present study, a yeast two-hybrid screen was performed, and V protein was found to interact with the CacyBP/SIP protein. The results of co-immunoprecipitation and immuno-colocalization assays confirmed the interaction between V protein and CacyBP/SIP. The results of quantitative-PCR and viral plaque assays showed that overexpression of CacyBP/SIP inhibited viral replication in DF-1 cells. Overexpression of CacyBP/SIP in DF-1 cells induced caspase3-dependent apoptosis. The effect of knocking down CacyBP/SIP by siRNA was the opposite of that observed upon overexpression. Moreover, it is known that NDV induces cell apoptosis via multiple caspase-dependent pathways. Furthermore, V protein inhibited cell apoptosis and downregulated CacyBP/SIP expression in DF-1 cells. Taken together, the findings of the current study indicate that V protein interacts with CacyBP/SIP, thereby regulating cell apoptosis and viral replication.
Collapse
Affiliation(s)
- Zhili Chu
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Caiying Wang
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qiuxia Tang
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaolei Shi
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaolong Gao
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jiangang Ma
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Kejia Lu
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qingsong Han
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yanqing Jia
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiangwei Wang
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Fathalrhman Eisa Addoma Adam
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Department of Preventive Medicine and Public Health, Faculty of Veterinary Science, University of Nyala, Nyala, Sudan
| | - Haijin Liu
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Sa Xiao
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xinglong Wang
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zengqi Yang
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
9
|
McLinton EC, Wagstaff KM, Lee A, Moseley GW, Marsh GA, Wang LF, Jans DA, Lieu KG, Netter HJ. Nuclear localization and secretion competence are conserved among henipavirus matrix proteins. J Gen Virol 2017; 98:563-576. [PMID: 28056216 DOI: 10.1099/jgv.0.000703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Viruses of the genus Henipavirus of the family Paramyxoviridae are zoonotic pathogens, which have emerged in Southeast Asia, Australia and Africa. Nipah virus (NiV) and Hendra virus are highly virulent pathogens transmitted from bats to animals and humans, while the henipavirus Cedar virus seems to be non-pathogenic in infection studies. The full replication cycle of the Paramyxoviridae occurs in the host cell's cytoplasm, where viral assembly is orchestrated by the matrix (M) protein. Unexpectedly, the NiV-M protein traffics through the nucleus as an essential step to engage the plasma membrane in preparation for viral budding/release. Comparative studies were performed to assess whether M protein nuclear localization is a common feature of the henipaviruses, including the recently sequenced (although not yet isolated) Ghanaian bat henipavirus (Kumasi virus, GH-M74a virus) and Mojiang virus. Live-cell confocal microscopy revealed that nuclear translocation of GFP-fused M protein is conserved between henipaviruses in both human- and bat-derived cell lines. However, the efficiency of M protein nuclear localization and virus-like particle budding competency varied. Additionally, Cedar virus-, Kumasi virus- and Mojiang virus-M proteins were mutated in a bipartite nuclear localization signal, indicating that a key lysine residue is essential for nuclear import, export and induction of budding events, as previously reported for NiV-M. The results of this study suggest that the M proteins of henipaviruses may utilize a similar nucleocytoplasmic trafficking pathway as an essential step during viral replication in both humans and bats.
Collapse
Affiliation(s)
- Elisabeth C McLinton
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Kylie M Wagstaff
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Alexander Lee
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Gregory W Moseley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Victoria 3000, Australia
| | - Glenn A Marsh
- CSIRO Biosecurity Flagship, Australian Animal Health Laboratory, Geelong, Victoria 3219, Australia
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - David A Jans
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Kim G Lieu
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.,Present address: Commonwealth Serum Laboratories Limited, Parkville, Victoria 3052, Australia
| | - Hans J Netter
- Victorian Infectious Diseases Reference Laboratory, Melbourne Health, The Peter Doherty Institute, Victoria 3000, Australia.,Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
10
|
Gao S, Zhang J, Miao T, Ma D, Su Y, An Y, Zhang Q. A simple and convenient sticky/blunt-end ligation method for fusion gene construction. Biochem Genet 2015; 53:42-8. [PMID: 25820211 DOI: 10.1007/s10528-015-9669-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 02/27/2015] [Indexed: 11/26/2022]
Abstract
Here we present a simple and convenient sticky/blunt-end ligation method for fusion gene construction. The fusion gene is constructed by seamless ligation of 5'-end phosphorylated blunt ends instead of by overlap extension PCR (OE-PCR). Therefore, the challenge of amplifying large DNA fragments (e.g., the large bifunctional enzyme gene constructed by fusion of two monofunctional enzyme genes) by PCR can be avoided. In addition, synthesis of the inner primers for OE-PCR is not necessary, indicating that this method should be especially convenient for construction of fusion genes with various combinations of multiple fragments (e.g., chimeric gene libraries, fusion gene libraries). As a modification of the commonly used fusion gene construction technique, this method may find a wide range of applications in bioscience and biotechnology.
Collapse
Affiliation(s)
- Song Gao
- College of Biosciences and Biotechnology, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang, 110161, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
11
|
Pentecost M, Vashisht AA, Lester T, Voros T, Beaty SM, Park A, Wang YE, Yun TE, Freiberg AN, Wohlschlegel JA, Lee B. Evidence for ubiquitin-regulated nuclear and subnuclear trafficking among Paramyxovirinae matrix proteins. PLoS Pathog 2015; 11:e1004739. [PMID: 25782006 PMCID: PMC4363627 DOI: 10.1371/journal.ppat.1004739] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 02/10/2015] [Indexed: 11/24/2022] Open
Abstract
The paramyxovirus matrix (M) protein is a molecular scaffold required for viral morphogenesis and budding at the plasma membrane. Transient nuclear residence of some M proteins hints at non-structural roles. However, little is known regarding the mechanisms that regulate the nuclear sojourn. Previously, we found that the nuclear-cytoplasmic trafficking of Nipah virus M (NiV-M) is a prerequisite for budding, and is regulated by a bipartite nuclear localization signal (NLSbp), a leucine-rich nuclear export signal (NES), and monoubiquitination of the K258 residue within the NLSbp itself (NLSbp-lysine). To define whether the sequence determinants of nuclear trafficking identified in NiV-M are common among other Paramyxovirinae M proteins, we generated the homologous NES and NLSbp-lysine mutations in M proteins from the five major Paramyxovirinae genera. Using quantitative 3D confocal microscopy, we determined that the NES and NLSbp-lysine are required for the efficient nuclear export of the M proteins of Nipah virus, Hendra virus, Sendai virus, and Mumps virus. Pharmacological depletion of free ubiquitin or mutation of the conserved NLSbp-lysine to an arginine, which inhibits M ubiquitination, also results in nuclear and nucleolar retention of these M proteins. Recombinant Sendai virus (rSeV-eGFP) bearing the NES or NLSbp-lysine M mutants rescued at similar efficiencies to wild type. However, foci of cells expressing the M mutants displayed marked fusogenicity in contrast to wild type, and infection did not spread. Recombinant Mumps virus (rMuV-eGFP) bearing the homologous mutations showed similar defects in viral morphogenesis. Finally, shotgun proteomics experiments indicated that the interactomes of Paramyxovirinae M proteins are significantly enriched for components of the nuclear pore complex, nuclear transport receptors, and nucleolar proteins. We then synthesize our functional and proteomics data to propose a working model for the ubiquitin-regulated nuclear-cytoplasmic trafficking of cognate paramyxovirus M proteins that show a consistent nuclear trafficking phenotype. Elucidating virus-cell interactions is fundamental to understanding viral replication and identifying targets for therapeutic control of viral infection. Paramyxoviruses include human and animal pathogens of medical and agricultural significance. Their matrix (M) structural protein organizes virion assembly at the plasma membrane and mediates viral budding. While nuclear localization of M proteins has been described for some paramyxoviruses, the underlying mechanisms of nuclear trafficking and the biological relevance of this observation have remained largely unexamined. Through comparative analyses of M proteins across five Paramyxovirinae genera, we identify M proteins from at least three genera that exhibit similar nuclear trafficking phenotypes regulated by an NLSbp as well as an NES sequence within M that may mediate the interaction of M with host nuclear transport receptors. Additionally, a conserved lysine within the NLSbp of some M proteins is required for nuclear export by regulating M ubiquitination. Sendai virus engineered to express a ubiquitination-defective M does not produce infectious virus but instead displays extensive cell-cell fusion while M is retained in the nucleolus. Thus, some Paramyxovirinae M proteins undergo regulated and active nuclear and subnuclear transport, a prerequisite for viral morphogenesis, which also suggests yet to be discovered roles for M in the nucleus.
Collapse
Affiliation(s)
- Mickey Pentecost
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Ajay A. Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Talia Lester
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tim Voros
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Shannon M. Beaty
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Arnold Park
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yao E. Wang
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tatyana E Yun
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Benhur Lee
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
12
|
Paramyxovirus glycoprotein incorporation, assembly and budding: a three way dance for infectious particle production. Viruses 2014; 6:3019-54. [PMID: 25105277 PMCID: PMC4147685 DOI: 10.3390/v6083019] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 12/21/2022] Open
Abstract
Paramyxoviruses are a family of negative sense RNA viruses whose members cause serious diseases in humans, such as measles virus, mumps virus and respiratory syncytial virus; and in animals, such as Newcastle disease virus and rinderpest virus. Paramyxovirus particles form by assembly of the viral matrix protein, the ribonucleoprotein complex and the surface glycoproteins at the plasma membrane of infected cells and subsequent viral budding. Two major glycoproteins expressed on the viral envelope, the attachment protein and the fusion protein, promote attachment of the virus to host cells and subsequent virus-cell membrane fusion. Incorporation of the surface glycoproteins into infectious progeny particles requires coordinated interplay between the three viral structural components, driven primarily by the matrix protein. In this review, we discuss recent progress in understanding the contributions of the matrix protein and glycoproteins in driving paramyxovirus assembly and budding while focusing on the viral protein interactions underlying this process and the intracellular trafficking pathways for targeting viral components to assembly sites. Differences in the mechanisms of particle production among the different family members will be highlighted throughout.
Collapse
|
13
|
Duan Z, Li J, Zhu J, Chen J, Xu H, Wang Y, Liu H, Hu S, Liu X. A single amino acid mutation, R42A, in the Newcastle disease virus matrix protein abrogates its nuclear localization and attenuates viral replication and pathogenicity. J Gen Virol 2014; 95:1067-1073. [PMID: 24603525 DOI: 10.1099/vir.0.062992-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Newcastle disease virus (NDV) matrix (M) protein is a highly basic and nucleocytoplasmic shuttling viral protein. Previous study has demonstrated that the N-terminal 100 aa of NDV M protein are somewhat acidic overall, but the remainder of the polypeptide is strongly basic. In this study, we investigated the role of the N-terminal basic residues in the subcellular localization of M protein and in the replication and pathogenicity of NDV. We found that mutation of the basic residue arginine (R) to alanine (A) at position 42 disrupted M's nuclear localization. Moreover, a recombinant virus with R42A mutation in the M protein reduced viral replication in DF-1 cells and attenuated the virulence and pathogenicity of the virus in chickens. This is the first report to show that a basic residue mutation in the NDV M protein abrogates its nuclear localization and attenuates viral replication and pathogenicity.
Collapse
Affiliation(s)
- Zhiqiang Duan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Juan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Jie Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Jian Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Haixu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Yuyang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Huimou Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Shunlin Hu
- Ministry of Educational Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou 225009, PR China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.,College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Xiufan Liu
- Ministry of Educational Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou 225009, PR China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.,College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| |
Collapse
|
14
|
The nucleolar phosphoprotein B23 targets Newcastle disease virus matrix protein to the nucleoli and facilitates viral replication. Virology 2014; 452-453:212-22. [PMID: 24606698 DOI: 10.1016/j.virol.2014.01.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/28/2013] [Accepted: 01/17/2014] [Indexed: 01/14/2023]
Abstract
The cellular nucleolar proteins are reported to facilitate the replication cycles of some human and animal viruses by interaction with viral proteins. In this study, a nucleolar phosphoprotein B23 was identified to interact with Newcastle disease virus (NDV) matrix (M) protein. We found that NDV M protein accumulated in the nucleolus by binding B23 early in infection, but resulted in the redistribution of B23 from the nucleoli to the nucleoplasm later in infection. In vitro binding studies utilizing deletion mutants indicated that amino acids 30-60 of M and amino acids 188-245 of B23 were required for binding. Furthermore, knockdown of B23 by siRNA or overexpression of B23 or M-binding B23-derived polypeptides remarkably reduced cytopathic effect and inhibited NDV replication. Collectively, we show that B23 facilitates NDV replication by targeting M to the nucleolus, demonstrating for the first time a direct role for nucleolar protein B23 in a paramyxovirus replication process.
Collapse
|
15
|
Duan Z, Hu Z, Zhu J, Xu H, Chen J, Liu H, Hu S, Liu X. Mutations in the FPIV motif of Newcastle disease virus matrix protein attenuate virus replication and reduce virus budding. Arch Virol 2014; 159:1813-9. [PMID: 24477785 DOI: 10.1007/s00705-014-1998-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/20/2014] [Indexed: 01/06/2023]
Abstract
The FPIV-like late domains identified in the matrix (M) proteins of parainfluenza virus 5 and mumps virus have been demonstrated to be critical for virus budding. In this study, we found that the same FPIV sequence motif is present in the N-terminus of the Newcastle disease virus (NDV) M protein. Mutagenesis experiments demonstrated that mutation of either phenylalanine (F) or proline (P) to alanine led to a more obvious decrease in viral virulence and replication and resulted in poor budding of the mutant viruses. Additionally, evidence for the involvement of cellular multivesicular body (MVB) proteins was obtained, since NDV production was inhibited upon expression of dominant-negative versions of the VPS4A-E228Q protein. Together, these results demonstrate that the FPIV motif, especially the residues F and P, within the NDV M protein, plays a critical role in NDV replication and budding, and this budding process likely involves the cellular MVB pathway.
Collapse
Affiliation(s)
- Zhiqiang Duan
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | | | | | | | | | | | | | | |
Collapse
|