1
|
McCleary S, Strong R, McCarthy RR, Edwards JC, Howes EL, Stevens LM, Sánchez-Cordón PJ, Núñez A, Watson S, Mileham AJ, Lillico SG, Tait-Burkard C, Proudfoot C, Ballantyne M, Whitelaw CBA, Steinbach F, Crooke HR. Substitution of warthog NF-κB motifs into RELA of domestic pigs is not sufficient to confer resilience to African swine fever virus. Sci Rep 2020; 10:8951. [PMID: 32488046 PMCID: PMC7265332 DOI: 10.1038/s41598-020-65808-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/05/2020] [Indexed: 11/23/2022] Open
Abstract
African swine fever virus (ASFV) causes a lethal, haemorrhagic disease in domestic swine that threatens pig production across the globe. Unlike domestic pigs, warthogs, which are wildlife hosts of the virus, do not succumb to the lethal effects of infection. There are three amino acid differences between the sequence of the warthog and domestic pig RELA protein; a subunit of the NF-κB transcription factor that plays a key role in regulating the immune response to infections. Domestic pigs with all 3 or 2 of the amino acids from the warthog RELA orthologue have been generated by gene editing. To assess if these variations confer resilience to ASF we established an intranasal challenge model with a moderately virulent ASFV. No difference in clinical, virological or pathological parameters were observed in domestic pigs with the 2 amino acid substitution. Domestic pigs with all 3 amino acids found in warthog RELA were not resilient to ASF but a delay in onset of clinical signs and less viral DNA in blood samples and nasal secretions was observed in some animals. Inclusion of these and additional warthog genetic traits into domestic pigs may be one way to assist in combating the devastating impact of ASFV.
Collapse
Affiliation(s)
- Stephen McCleary
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - Rebecca Strong
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - Ronan R McCarthy
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK.,Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Heinz Wolff Building, Kingston Lane, Brunel University London, Uxbridge, United Kingdom
| | - Jane C Edwards
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK.,The Pirbright Institute, Pirbright, United Kingdom
| | - Emma L Howes
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - Lisa M Stevens
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - Pedro J Sánchez-Cordón
- Pathology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - Alejandro Núñez
- Pathology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - Samantha Watson
- Animal Science Unit, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - Alan J Mileham
- Genus PLC, 1525 River Road, DeForest, Wisconsin, 53532, USA
| | - Simon G Lillico
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Christine Tait-Burkard
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Chris Proudfoot
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Maeve Ballantyne
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - C Bruce A Whitelaw
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Falko Steinbach
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - Helen R Crooke
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK.
| |
Collapse
|
2
|
Salguero FJ, Frossard JP, Rebel JMJ, Stadejek T, Morgan SB, Graham SP, Steinbach F. Host-pathogen interactions during porcine reproductive and respiratory syndrome virus 1 infection of piglets. Virus Res 2015; 202:135-43. [PMID: 25559070 PMCID: PMC7172408 DOI: 10.1016/j.virusres.2014.12.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 01/26/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a major disease affecting pigs worldwide and resulting in considerable economic losses. While PRRS is a global phenomenon, the causative viruses PRRSV-1 (first detected in Europe) and PRRSV-2 (isolated in North America) are genetically and biologically distinct. In addition, the disease outcome is directly linked to co-infections associated with the porcine respiratory disease complex and the host response is variable between different breeds of pigs. It is therefore warranted when studying the pathogenesis of PRRS to consider each viral genotype separately and apply careful consideration to the disease model studied. We here review the respiratory pig model for PRRSV-1, with a focus on a recent set of studies conducted with carefully selected virus strains and pigs, which may serve as both a baseline and benchmark for future investigation.
Collapse
Affiliation(s)
- Francisco J Salguero
- Virology Department, Animal and Plant Health Agency, Weybridge, Addlestone, United Kingdom; Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Jean-Pierre Frossard
- Virology Department, Animal and Plant Health Agency, Weybridge, Addlestone, United Kingdom.
| | - Johanna M J Rebel
- Department of Infection Biology, Central Veterinary Institute, Lelystad, The Netherlands
| | - Tomasz Stadejek
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life, Poland
| | - Sophie B Morgan
- Virology Department, Animal and Plant Health Agency, Weybridge, Addlestone, United Kingdom
| | - Simon P Graham
- Virology Department, Animal and Plant Health Agency, Weybridge, Addlestone, United Kingdom; Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Falko Steinbach
- Virology Department, Animal and Plant Health Agency, Weybridge, Addlestone, United Kingdom; Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| |
Collapse
|