1
|
Volz A, Lim S, Kaserer M, Lülf A, Marr L, Jany S, Deeg CA, Pijlman GP, Koraka P, Osterhaus ADME, Martina BE, Sutter G. Immunogenicity and protective efficacy of recombinant Modified Vaccinia virus Ankara candidate vaccines delivering West Nile virus envelope antigens. Vaccine 2016; 34:1915-26. [PMID: 26939903 DOI: 10.1016/j.vaccine.2016.02.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/14/2016] [Accepted: 02/16/2016] [Indexed: 12/30/2022]
Abstract
West Nile virus (WNV) cycles between insects and wild birds, and is transmitted via mosquito vectors to horses and humans, potentially causing severe neuroinvasive disease. Modified Vaccinia virus Ankara (MVA) is an advanced viral vector for developing new recombinant vaccines against infectious diseases and cancer. Here, we generated and evaluated recombinant MVA candidate vaccines that deliver WNV envelope (E) antigens and fulfil all the requirements to proceed to clinical testing in humans. Infections of human and equine cell cultures with recombinant MVA demonstrated efficient synthesis and secretion of WNV envelope proteins in mammalian cells non-permissive for MVA replication. Prime-boost immunizations in BALB/c mice readily induced circulating serum antibodies binding to recombinant WNV E protein and neutralizing WNV in tissue culture infections. Vaccinations in HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice elicited WNV E-specific CD8+ T cell responses. Moreover, the MVA-WNV candidate vaccines protected C57BL/6 mice against lineage 1 and lineage 2 WNV infection and induced heterologous neutralizing antibodies. Thus, further studies are warranted to evaluate these recombinant MVA-WNV vaccines in other preclinical models and use them as candidate vaccine in humans.
Collapse
Affiliation(s)
- Asisa Volz
- German Centre for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, D-80539 Munich, Germany
| | - Stephanie Lim
- Viroscience Lab, Erasmus Medical Center, Rotterdam, The Netherlands; Artemis One Health Research Institute, Utrecht, The Netherlands
| | - Martina Kaserer
- German Centre for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, D-80539 Munich, Germany
| | - Anna Lülf
- German Centre for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, D-80539 Munich, Germany
| | - Lisa Marr
- German Centre for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, D-80539 Munich, Germany
| | - Sylvia Jany
- German Centre for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, D-80539 Munich, Germany
| | - Cornelia A Deeg
- Institute for Animal Physiology, LMU University of Munich, Munich, Germany
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Penelope Koraka
- Viroscience Lab, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Albert D M E Osterhaus
- Viroscience Lab, Erasmus Medical Center, Rotterdam, The Netherlands; Artemis One Health Research Institute, Utrecht, The Netherlands
| | - Byron E Martina
- Viroscience Lab, Erasmus Medical Center, Rotterdam, The Netherlands; Artemis One Health Research Institute, Utrecht, The Netherlands
| | - Gerd Sutter
- German Centre for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, D-80539 Munich, Germany.
| |
Collapse
|