1
|
Ao Z, Ouyang MJ, Olukitibi TA, Yao X. SARS-CoV-2 Delta spike protein enhances the viral fusogenicity and inflammatory cytokine production. iScience 2022; 25:104759. [PMID: 35854977 PMCID: PMC9281453 DOI: 10.1016/j.isci.2022.104759] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/14/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
The Delta variant had spread globally in 2021 and caused more serious disease than the original virus and Omicron variant. In this study, we investigated several virological features of Delta spike protein (SPDelta), including protein maturation, its impact on viral entry of pseudovirus and cell-cell fusion, and its induction of inflammatory cytokine production in human macrophages and dendritic cells. The results showed that SPΔCDelta exhibited enhanced S1/S2 cleavage in cells and pseudotyped virus-like particles (PVLPs). Further, SPΔCDelta elevated pseudovirus entry in human lung cell lines and significantly enhanced syncytia formation. Furthermore, we revealed that SPΔCDelta-PVLPs had stronger effects on stimulating NF-κB and AP-1 signaling in human monocytic THP1 cells and induced significantly higher levels of proinflammatory cytokine, such as TNF-α, IL-1β, and IL-6, released from human macrophages and dendritic cells. Overall, these studies provide evidence to support the important role of SPΔCDelta during virus infection, transmission, and pathogenesis.
Collapse
Affiliation(s)
- Zhujun Ao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Maggie Jing Ouyang
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Titus Abiola Olukitibi
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Xiaojian Yao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
2
|
Olukitibi TA, Ao Z, Azizi H, Mahmoudi M, Coombs K, Kobasa D, Kobinger G, Yao X. Development and characterization of influenza M2 ectodomain and/or hemagglutinin stalk-based dendritic cell-targeting vaccines. Front Microbiol 2022; 13:937192. [PMID: 36003947 PMCID: PMC9393625 DOI: 10.3389/fmicb.2022.937192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
A universal influenza vaccine is required for broad protection against influenza infection. Here, we revealed the efficacy of novel influenza vaccine candidates based on Ebola glycoprotein dendritic cell (DC)-targeting domain (EΔM) fusion protein technology. The four copies of ectodomain matrix protein of influenza (tM2e) or M2e hemagglutinin stalk (HA stalk) peptides (HM2e) were fused with EΔM to generate EΔM-tM2e or EΔM-HM2e, respectively. We demonstrated that EΔM-HM2e- or EΔM-tM2e-pseudotyped viral particles can efficiently target DC/macrophages in vitro and induced significantly high titers of anti-HA and/or anti-M2e antibodies in mice. Significantly, the recombinant vesicular stomatitis virus (rVSV)-EΔM-tM2e and rVSV-EΔM-HM2e vaccines mediated rapid and potent induction of M2 or/and HA antibodies in mice sera and mucosa. Importantly, vaccination of rVSV-EΔM-tM2e or rVSV-EΔM-HM2e protected mice from influenza H1N1 and H3N2 challenges. Taken together, our study suggests that rVSV-EΔM-tM2e and rVSV-EΔM-HM2e are promising candidates that may lead to the development of a universal vaccine against different influenza strains.
Collapse
Affiliation(s)
- Titus Abiola Olukitibi
- Laboratory of Molecular Human Retrovirology, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Zhujun Ao
- Laboratory of Molecular Human Retrovirology, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Hiva Azizi
- Centre de Recherche en Infectiologie de l’Université Laval, Centre Hospitalier de l’Université Laval, Québec, QC, Canada
| | - Mona Mahmoudi
- Laboratory of Molecular Human Retrovirology, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kevin Coombs
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Darwyn Kobasa
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Gary Kobinger
- Centre de Recherche en Infectiologie de l’Université Laval, Centre Hospitalier de l’Université Laval, Québec, QC, Canada
- Galveston National Laboratory, 301 University Blvd., Galveston, TX, United States
| | - Xiaojian Yao
- Laboratory of Molecular Human Retrovirology, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Xiaojian Yao,
| |
Collapse
|
3
|
Wang M, Li X, Xie W, Zhong L, Leng Y, Chen X, Yang M, Qi L, Zhang Z, Liu L, Tang D. Inhibitory Effect of Lentivirus-Mediated Gag-Caspase-8 on the Growth of HER-2-Overexpressing Primary Human Breast Cancer Cells. Cancer Biother Radiopharm 2021; 37:720-728. [PMID: 34388026 DOI: 10.1089/cbr.2021.0124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Apoptosis plays an essential role in the development and treatment of tumors, and caspase-8 (CASP8) plays an important role in the enzyme cascade reaction that leads to apoptosis. Human epidermal growth factor receptor 2 (HER-2)-overexpressing breast cancer is highly aggressive and has a high recurrence rate and poor prognosis. This study investigated whether lentivirus-mediated Gag-CASP8 can effectively deliver activated CASP8 into primary human breast cancer cells overexpressing HER-2 to induce apoptosis and explore the underlying mechanism. Materials and Methods: HER-2-overexpressing primary human breast cancer cells were infected with lentivirus-like particles carrying Gag-CASP8. Results: After a 48-h infection of primary human breast cancer cells with HER-2 by lentivirus-mediated Gag-CASP8, significant differences were observed in the survival rate, migration ability, S-phase number of cells, apoptosis rate, and intracellular activated CASP8 and caspase-3 levels in tumor cells compared with those in the control group (p < 0.05). Conclusions: Lentivirus-mediated Gag-CASP8 can deliver activated CASP8 into HER-2-overexpressing primary human breast cancer cells and induce apoptosis by activating caspase-3, a downstream apoptotic executive molecule. By blocking the S-phase to inhibit cell proliferation and migration, lentivirus-mediated Gag-CASP8 provides a reference for tumor gene therapy.
Collapse
Affiliation(s)
- Min Wang
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiping Li
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wei Xie
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Li Zhong
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yu Leng
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaoqiong Chen
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Mei Yang
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ling Qi
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhenda Zhang
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Linjian Liu
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dongxin Tang
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
4
|
Development and Evaluation of an Ebola Virus Glycoprotein Mucin-Like Domain Replacement System as a New Dendritic Cell-Targeting Vaccine Approach against HIV-1. J Virol 2021; 95:e0236820. [PMID: 34011553 PMCID: PMC8274623 DOI: 10.1128/jvi.02368-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The development of efficient vaccine approaches against HIV infection remains challenging in the vaccine field. Here, we developed an Ebola virus envelope glycoprotein (EboGP)-based chimeric fusion protein system and demonstrated that replacement of the mucin-like domain (MLD) of EboGP with HIV C2-V3-C3 (134 amino acids [aa]) or C2-V3-C3-V4-C4-V5-C5 (243 aa) polypeptides (EbGPΔM-V3 and EbGPΔM-V3-V5, respectively) still maintained the efficiency of EboGP-mediated viral entry into human macrophages and dendritic cells (DCs). Animal studies using mice revealed that immunization with virus-like particles (VLPs) containing the above chimeric proteins, especially EbGPΔM-V3, induced significantly more potent anti-HIV antibodies than HIV gp120 alone in mouse serum and vaginal fluid. Moreover, the splenocytes isolated from mice immunized with VLPs containing EbGPΔM-V3 produced significantly higher levels of gamma interferon (IFN-γ), interleukin 2 (IL-2), IL-4, IL-5, and macrophage inflammatory protein 1α (MIP-1α). Additionally, we demonstrated that coexpression of EbGPΔM-V3 and the HIV Env glycoprotein in a recombinant vesicular stomatitis virus (rVSV) vector elicited robust anti-HIV antibodies that may have specifically recognized epitopes outside or inside the C2-V3-C3 region of HIV-1 gp120 and cross-reacted with the gp120 from different HIV strains. Thus, this study has demonstrated the great potential of this DC-targeting vaccine platform as a new vaccine approach for improving immunogen delivery and increasing vaccine efficacy. IMPORTANCE Currently, there are more than 38.5 million reported cases of HIV globally. To date, there is no approved vaccine for HIV-1 infection. Thus, the development of an effective vaccine against HIV infection remains a global priority. This study revealed the efficacy of a novel dendritic cell (DC)-targeting vaccination approach against HIV-1. The results clearly show that the immunization of mice with virus-like particles (VLPs) and VSVs containing HIV Env and a fusion protein composed of a DC-targeting domain of Ebola virus GP with HIV C2-V3-C3 polypeptides (EbGPΔM-V3) could induce robust immune responses against HIV-1 Env and/or Gag in serum and vaginal mucosa. These findings provide a proof of concept of this novel and efficient DC-targeting vaccine approach in delivering various antigenic polypeptides of HIV-1 and/or other emergent infections to the host antigen-presenting cells to prevent HIV and other viral infections.
Collapse
|
5
|
Ao Z, Chan M, Ouyang MJ, Olukitibi TA, Mahmoudi M, Kobasa D, Yao X. Identification and evaluation of the inhibitory effect of Prunella vulgaris extract on SARS-coronavirus 2 virus entry. PLoS One 2021; 16:e0251649. [PMID: 34106944 PMCID: PMC8189562 DOI: 10.1371/journal.pone.0251649] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/29/2021] [Indexed: 12/31/2022] Open
Abstract
Until now, antiviral therapeutic agents are still urgently required for treatment or prevention of SARS-coronavirus 2 (SCoV-2) virus infection. In this study, we established a sensitive SCoV-2 Spike glycoprotein (SP), including an SP mutant D614G, pseudotyped HIV-1-based vector system and tested their ability to infect ACE2-expressing cells. Based on this system, we have demonstrated that an aqueous extract from the Natural herb Prunella vulgaris (NhPV) displayed potent inhibitory effects on SCoV-2 SP (including SPG614 mutant) pseudotyped virus (SCoV-2-SP-PVs) mediated infections. Moreover, we have compared NhPV with another compound, Suramin, for their anti-SARS-CoV-2 activities and the mode of their actions, and found that both NhPV and Suramin are able to directly interrupt SCoV-2-SP binding to its receptor ACE2 and block the viral entry step. Importantly, the inhibitory effects of NhPV and Suramin were confirmed by the wild type SARS-CoV-2 (hCoV-19/Canada/ON-VIDO-01/2020) virus infection in Vero cells. Furthermore, our results also demonstrated that the combination of NhPV/Suramin with an anti-SARS-CoV-2 neutralizing antibody mediated a more potent blocking effect against SCoV2-SP-PVs. Overall, by using SARS-CoV-2 SP-pseudotyped HIV-1-based entry system, we provide strong evidence that NhPV and Suramin have anti-SARS-CoV-2 activity and may be developed as a novel antiviral approach against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Zhujun Ao
- Department of Medical Microbiology and Infectious Diseases, Laboratory of
Molecular Human Retrovirology, Rady Faculty of Health Sciences, College of
Medicine, University of Manitoba, Winnipeg, Canada
| | - Mable Chan
- Special Pathogens Program, National Microbiology Laboratory, Public
Health Agency of Canada, Winnipeg, Canada
| | - Maggie Jing Ouyang
- Department of Medical Microbiology and Infectious Diseases, Laboratory of
Molecular Human Retrovirology, Rady Faculty of Health Sciences, College of
Medicine, University of Manitoba, Winnipeg, Canada
| | - Titus Abiola Olukitibi
- Department of Medical Microbiology and Infectious Diseases, Laboratory of
Molecular Human Retrovirology, Rady Faculty of Health Sciences, College of
Medicine, University of Manitoba, Winnipeg, Canada
| | - Mona Mahmoudi
- Department of Medical Microbiology and Infectious Diseases, Laboratory of
Molecular Human Retrovirology, Rady Faculty of Health Sciences, College of
Medicine, University of Manitoba, Winnipeg, Canada
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public
Health Agency of Canada, Winnipeg, Canada
| | - Xiaojian Yao
- Department of Medical Microbiology and Infectious Diseases, Laboratory of
Molecular Human Retrovirology, Rady Faculty of Health Sciences, College of
Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
6
|
Ao Z, Wang L, Mendoza EJ, Cheng K, Zhu W, Cohen EA, Fowke K, Qiu X, Kobinger G, Yao X. Incorporation of Ebola glycoprotein into HIV particles facilitates dendritic cell and macrophage targeting and enhances HIV-specific immune responses. PLoS One 2019; 14:e0216949. [PMID: 31100082 PMCID: PMC6524799 DOI: 10.1371/journal.pone.0216949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/01/2019] [Indexed: 01/05/2023] Open
Abstract
The development of an effective vaccine against HIV infection remains a global priority. Dendritic cell (DC)-based HIV immunotherapeutic vaccine is a promising approach which aims at optimizing the HIV-specific immune response using primed DCs to promote and enhance both the cellular and humoral arms of immunity. Since the Ebola virus envelope glycoprotein (EboGP) has strong DC-targeting ability, we investigated whether EboGP is able to direct HIV particles towards DCs efficiently and promote potent HIV-specific immune responses. Our results indicate that the incorporation of EboGP into non-replicating virus-like particles (VLPs) enhances their ability to target human monocyte-derived dendritic cells (MDDCs) and monocyte-derived macrophages (MDMs). Also, a mucin-like domain deleted EboGP (EboGPΔM) can further enhanced the MDDCs and MDMs-targeting ability. Furthermore, we investigated the effect of EboGP on HIV immunogenicity in mice, and the results revealed a significantly stronger HIV-specific humoral immune response when immunized with EboGP-pseudotyped HIV VLPs compared with those immunized with HIV VLPs. Splenocytes harvested from mice immunized with EboGP-pseudotyped HIV VLPs secreted increased levels of macrophage inflammatory proteins-1α (MIP-1α) and IL-4 upon stimulation with HIV Env and/or Gag peptides compared with those harvested from mice immunized with HIV VLPs. Collectively, this study provides evidence for the first time that the incorporation of EboGP in HIV VLPs can facilitate DC and macrophage targeting and induce more potent immune responses against HIV.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- Chemokine CCL3/genetics
- Chemokine CCL3/immunology
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/virology
- Ebolavirus/chemistry
- Female
- Gene Expression
- HEK293 Cells
- HIV Antibodies/biosynthesis
- HIV Infections/immunology
- HIV Infections/prevention & control
- HIV Infections/virology
- HIV-1/drug effects
- HIV-1/growth & development
- HIV-1/immunology
- Humans
- Immunity, Cellular/drug effects
- Immunity, Humoral/drug effects
- Immunization
- Immunogenicity, Vaccine
- Interleukin-4/genetics
- Interleukin-4/immunology
- Lymphocytes/cytology
- Lymphocytes/drug effects
- Lymphocytes/immunology
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/virology
- Mice
- Mice, Inbred C57BL
- Molecular Targeted Therapy
- Primary Cell Culture
- Spleen/cytology
- Spleen/drug effects
- Spleen/immunology
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/immunology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- env Gene Products, Human Immunodeficiency Virus/genetics
- env Gene Products, Human Immunodeficiency Virus/immunology
- gag Gene Products, Human Immunodeficiency Virus/genetics
- gag Gene Products, Human Immunodeficiency Virus/immunology
Collapse
Affiliation(s)
- Zhujun Ao
- Laboratory of Molecular Human Retrovirology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lijun Wang
- Laboratory of Molecular Human Retrovirology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Histology and Embryology, Zunyi Medical College, Zunyi, Guizhou, China
| | - Emelissa J. Mendoza
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Keding Cheng
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Wenjun Zhu
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Eric A. Cohen
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Keith Fowke
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xiangguo Qiu
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Gary Kobinger
- Centre de Recherche en Infectiologie de l’Université Laval/Centre Hospitalier de l’Université Laval (CHUL), Québec, Quebec, Canada
- * E-mail: (XJY); (GK)
| | - Xiaojian Yao
- Laboratory of Molecular Human Retrovirology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail: (XJY); (GK)
| |
Collapse
|
7
|
Noncovalent SUMO-interaction motifs in HIV integrase play important roles in SUMOylation, cofactor binding, and virus replication. Virol J 2019; 16:42. [PMID: 30940169 PMCID: PMC6446281 DOI: 10.1186/s12985-019-1134-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/21/2019] [Indexed: 12/12/2022] Open
Abstract
Background HIV integrase (IN) and its cellular cofactors, including lens-epithelium-derived growth factor (LEDGF/p75), Ku70, p300, and Rad52, are subject to small ubiquitin-like modifier (SUMO) modification. In addition to covalent SUMOylation, SUMO paralogs can also noncovalently bind proteins through SUMO-interacting motifs (SIMs). However, little is known about whether HIV IN contains SIMs and the roles of these motifs. Results We searched for the amino acid sequence of HIV IN and investigated three putative SIMs of IN: SIM1 72VILV75, SIM2 200IVDI203 and SIM3 257IKVV260. Our mutational analysis showed that 200IVDI203 and 257IKVV260 are two bona fide SIMs that mediate IN-SUMO noncovalent interactions. Additionally, a cell-based SUMOylation assay revealed that IN SIMs negatively regulate the SUMOylation of IN, as well as the interaction between IN and SUMO E2 conjugation enzyme Ubc9. Conversely, IN SIMs are required for its interactions with LEDGF/p75 but not with Ku70. Furthermore, our study reveals that SIM2 and SIM3 are required for the nuclear localization of IN. Finally, we investigated the impact of IN SIM2 and SIM3 on HIV single cycle replication in CD4+ C8166 T cells, and the results showed that viruses carrying IN SIM mutants are replication defective at the steps of the early viral life cycle, including reverse transcription, nuclear import and integration. Conclusion Our data suggested that the INSIM-SUMO interaction constitutes a new regulatory mechanism of IN functions and might be important for HIV-1 replication.
Collapse
|
8
|
Zhang Y, Wang C, Gao N, Zhang X, Yu X, Xu J, Gao F. Determination of neutralization activities by a new versatile assay using an HIV-1 genome carrying the Gaussia luciferase gene. J Virol Methods 2019; 267:22-28. [PMID: 30817948 DOI: 10.1016/j.jviromet.2019.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 11/26/2022]
Abstract
Characterization of neutralizing activities are critical to evaluation of the neutralization potency and breadth of monoclonal antibodies or anti-HIV-1 sera elicited during natural HIV-1 infection or by vaccines. We have developed a new neutralization method using the SG3Δenv genome carrying the Gaussia luciferase gene between the env and nef genes. Pseudotype viruses generated using this new SG3Δenv-GLuc backbone together with HIV-1 env genes were infectious to TZM-bl cells, T cell lines and primary T cells. Viral infection can be detected by measuring luciferase activities with both lysed cells and culture supernatants. Neutralization titers in sera from HIV-1-infected individuals against tier 1 and tier 2 viruses were comparable to those determined by the gold standard TZM-bl-firefly method. Since the neutralization activities can be determined by repeatedly measuring luciferase activities in culture supernatants of any cells that are infected by SG3Δenv-GLuc-Env pseudotype viruses, this new method can serve as a versatile and high throughput assay to determine neutralization activities.
Collapse
Affiliation(s)
- Yuepeng Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Nan Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China; Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
9
|
Ao Z, Chen W, Tan J, Cheng Y, Xu Y, Wang L, Yao X. Lentivirus-Based Virus-Like Particles Mediate Delivery of Caspase 8 into Breast Cancer Cells and Inhibit Tumor Growth. Cancer Biother Radiopharm 2019; 34:33-41. [DOI: 10.1089/cbr.2018.2566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Zhujun Ao
- Department of Human Anatomy and Histology, Zunyi Medical College, Zunyi, China
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | - Wei Chen
- Department of Human Anatomy and Histology, Zunyi Medical College, Zunyi, China
| | - Jun Tan
- Department of Human Anatomy and Histology, Zunyi Medical College, Zunyi, China
| | - Yuling Cheng
- Department of Human Anatomy and Histology, Zunyi Medical College, Zunyi, China
| | - Yanlan Xu
- Department of Human Anatomy and Histology, Zunyi Medical College, Zunyi, China
| | - Lijun Wang
- Department of Human Anatomy and Histology, Zunyi Medical College, Zunyi, China
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | - Xiaojian Yao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|