1
|
Zhu J, Miao Q, Guo H, Tang A, Dong D, Tang J, Wang F, Tong G, Liu G. Nucleolin interacts with the rabbit hemorrhagic disease virus replicase RdRp, nonstructural proteins p16 and p23, playing a role in virus replication. Virol Sin 2022; 37:48-59. [PMID: 35234629 PMCID: PMC8922422 DOI: 10.1016/j.virs.2022.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/15/2021] [Indexed: 11/24/2022] Open
Abstract
Rabbit hemorrhagic disease virus (RHDV) is a member of the Caliciviridae family and cannot be propagated in vitro, which has impeded the progress of investigating its replication mechanism. Construction of an RHDV replicon system has recently provided a platform for exploring RHDV replication in host cells. Here, aided by this replicon system and using two-step affinity purification, we purified the RHDV replicase and identified its associated host factors. We identified rabbit nucleolin (NCL) as a physical link, which mediating the interaction between other RNA-dependent RNA polymerase (RdRp)-related host proteins and the viral replicase RdRp. We found that the overexpression or knockdown of NCL significantly increased or severely impaired RHDV replication in RK-13 cells, respectively. NCL was identified to directly interact with RHDV RdRp, p16, and p23. Furthermore, NCL knockdown severely impaired the binding of RdRp to RdRp-related host factors. Collectively, these results indicate that the host protein NCL is essential for RHDV replication and acts as a physical link between viral replicase and host proteins.
Collapse
Affiliation(s)
- Jie Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Qiuhong Miao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Laboratory of Virology, Wageningen University and Research, Wageningen, 6708 PB, the Netherlands
| | - Hongyuan Guo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Aoxing Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Dandan Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jingyu Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Fang Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Guangqing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
2
|
Zhu J, Wang X, Qi R, Tan Y, Li C, Miao Q, Wang F, Liu G. Hemoglobin subunit beta interacts with the capsid, RdRp and VPg proteins, and antagonizes the replication of rabbit hemorrhagic disease virus. Vet Microbiol 2021; 259:109143. [PMID: 34098254 DOI: 10.1016/j.vetmic.2021.109143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022]
Abstract
Rabbit hemorrhagic disease virus (RHDV) causes a highly contagious disease in rabbits that is associated with high mortality. Because of the lack of a suitable cell culture system for RHDV, its pathogenic mechanism and replication remain unclear. This study found that the expression level of host protein rabbit hemoglobin subunit beta (HBB) was significantly downregulated in RHDV-infected cells. To investigate the role of HBB in RHDV replication, small interfering RNAs for HBB and HBB eukaryotic expression plasmids were used to change the expression level of HBB in RK-13 cells and the results showed that the RHDV replication level was negatively correlated with the expression level of HBB. It was also verified that HBB inhibited RHDV replication using constructed HBB stable overexpression cell lines and HBB knockout cell lines. The interaction of HBB with viral capsid protein VP60, replicase RdRp, and VPg protein was confirmed, as was the activation of the expression of interferon γ by HBB. The results of this study indicated that HBB may be an important host protein in host resistance to RHDV infection.
Collapse
Affiliation(s)
- Jie Zhu
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiaoxue Wang
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Ruibin Qi
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yonggui Tan
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Chuanfeng Li
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Qiuhong Miao
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Laboratory of Virology, Wageningen University and Research, Wageningen, 6708 PB, the Netherlands
| | - Fang Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Guangqing Liu
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
3
|
Guo H, Zhu J, Miao Q, Qi R, Tang A, Liu C, Yang H, Yuan L, Liu G. RPS5 interacts with the rabbit hemorrhagic disease virus 3' extremities region and plays a role in virus replication. Vet Microbiol 2020; 249:108858. [PMID: 32980631 DOI: 10.1016/j.vetmic.2020.108858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/15/2020] [Indexed: 11/15/2022]
Abstract
Rabbit hemorrhagic disease virus (RHDV), a member of Caliciviridae family, causes a highly contagious disease in rabbits. The RHDV replication mechanism is poorly understood due to the lack of a suitable culture system in vitro. This study identified RHDV 5' and 3' extremities (Ex) RNA binding proteins from the rabbit kidney cell line RK-13 based on a pull-down assay by applying a tRNA scaffold streptavidin aptamer. Using mass spectrometry (MS), several host proteins were discovered which interact with RHDV 5' and 3' Ex RNA. The ribosomal protein S5 (RPS5) was shown to interact with RHDV 3' Ex RNA directly by RNA-pulldown and confocal microscopy. To further investigate the role of RPS5 in RHDV replication, small interfering RNAs for RPS5 and RPS5 eukaryotic expression plasmids were used to change the expression level of RPS5 in RK-13 cells and the results showed that the RHDV replication and translation levels were positively correlated with the expression level of RPS5. It was also verified that RPS5 promoted RHDV replication by constructing RPS5 stable overexpression cell lines and RPS5 knockdown cell lines. In summary, it has been identified that RPS5 interacted with the RHDV 3' Ex RNA region and played a role in virus replication. These results will help to understand the mechanism of RHDV replication.
Collapse
Affiliation(s)
- Hongyuan Guo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Innovation Team of Small animal Infectious Disease, Shanghai, 200241, PR China
| | - Jie Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Innovation Team of Small animal Infectious Disease, Shanghai, 200241, PR China
| | - Qiuhong Miao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Innovation Team of Small animal Infectious Disease, Shanghai, 200241, PR China; Laboratory of Virology, Wageningen University and Research, Wageningen, 6708 PB, the Netherlands
| | - Ruibin Qi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Innovation Team of Small animal Infectious Disease, Shanghai, 200241, PR China
| | - Aoxing Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Innovation Team of Small animal Infectious Disease, Shanghai, 200241, PR China
| | - Chuncao Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Innovation Team of Small animal Infectious Disease, Shanghai, 200241, PR China
| | - Hongzao Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Innovation Team of Small animal Infectious Disease, Shanghai, 200241, PR China; College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 700731, PR China
| | - Ligang Yuan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 700731, PR China
| | - Guangqing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Innovation Team of Small animal Infectious Disease, Shanghai, 200241, PR China.
| |
Collapse
|
4
|
Evaluation of the Therapeutic Effect of a Flavonoid Prescription against Rabbit Hemorrhagic Disease In Vivo. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5201790. [PMID: 31080820 PMCID: PMC6475574 DOI: 10.1155/2019/5201790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/02/2019] [Accepted: 03/18/2019] [Indexed: 01/07/2023]
Abstract
Rabbit hemorrhagic disease (RHD) is an acute, high fatal contagious disease induced by rabbit hemorrhagic disease virus (RHDV) with acute severe hepatic injury and causes huge economic loss worldwide. In order to develop an effective and reliable drug to treat this disease in clinic, a prescription formulated with baicalin, linarin, icariin, and notoginsenoside R1 (BLIN) according to the theory of syndrome differentiation and treatment in traditional Chinese veterinary medicine was applied to investigate its curative effects against RHD in vivo. The preliminary study results showed that BLIN prescription exerted good curative effect on RHD therapy. To further validate the curative effect and to investigate the possible related curative mechanisms of this drug, the survival rates, the plasma biochemical indexes of hepatic function, the plasma evaluation indexes of oxidative injury, and the RHDV gene expression levels were detected and then the correlation among these indexes was also analyzed. These results showed that BLIN prescription could significantly increase the survival rate, reduce the hepatic injury severity, alleviate the oxidative injury, and decrease the RHDV gene expression level in rabbits infected with RHDV. All these results indicate that BLIN prescription possesses outstanding curative effect against RHD, and the curative mechanism may be related to its antioxidant and anti-RHDV activities. Therefore, this prescription can be expected to be exploited into a new candidate for RHD therapy in clinic.
Collapse
|
5
|
Chen M, Liu X, Hu B, Fan Z, Song Y, Wei H, Qiu R, Xu W, Zhu W, Wang F. Rabbit Hemorrhagic Disease Virus Non-structural Protein 6 Induces Apoptosis in Rabbit Kidney Cells. Front Microbiol 2019; 9:3308. [PMID: 30687286 PMCID: PMC6333657 DOI: 10.3389/fmicb.2018.03308] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/19/2018] [Indexed: 01/18/2023] Open
Abstract
Rabbit hemorrhagic disease (RHD) is a highly contagious disease caused by rabbit hemorrhagic disease virus (RHDV). Previous research has shown that RHDV induces apoptosis in numerous cell types, although the molecular mechanisms underlying the apoptosis induced by RHDV are not well understood. One possible factor is non-structural protein 6 (NSP6), a 3C-like protease that plays an important role in processing viral polyprotein precursors into mature non-structural proteins. To fully establish a role for NSP6, the present study examined the effects of ectopic expression of the protein in rabbit (RK13) and human (HeLa and HepG2) cells. We found that NSP6 suppressed cell viability and promoted apoptosis in all three cell types in a dose-dependent manner. We also identified increased caspase-3, -8, and -9 activities in RK13 cell, and an increased Bax to Bcl2 mRNA ratio. Mechanistically, the ability of NSP6 to induce apoptosis was impaired by mutation of the catalytic His27 residue. Our study has shown that RHDV NSP6 can induce apoptosis in host cells and is likely an important contributor to RHDV-induced apoptosis and pathogenesis.
Collapse
Affiliation(s)
- Mengmeng Chen
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xing Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bo Hu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhiyu Fan
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanhua Song
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Houjun Wei
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rulong Qiu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Weizhong Xu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Weifeng Zhu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fang Wang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
6
|
Zhao K, Li LW, Zhang YJ, Jiang YF, Gao F, Li GX, Yu LX, Zhao WY, Shan TL, Zhou YJ, Tong GZ. MOV10 inhibits replication of porcine reproductive and respiratory syndrome virus by retaining viral nucleocapsid protein in the cytoplasm of Marc-145 cells. Biochem Biophys Res Commun 2018; 504:157-163. [PMID: 30172377 DOI: 10.1016/j.bbrc.2018.08.148] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 08/25/2018] [Indexed: 12/14/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has been a major threat to global industrial pig farming ever since its emergence in the late 1980s. Identification of sustainable and effective control measures against PRRSV transmission is a pressing problem. The nucleocapsid (N) protein of PRRSV is specifically localized in the cytoplasm and nucleus of virus-infected cells which is important for PRRSV replication. In the current study, a new host restricted factor, Moloney leukemia virus 10-like protein (MOV10), was identified as an inhibitor of PRRSV replication. N protein levels and viral replication were significantly reduced in Marc-145 cells stably overexpressing MOV10 compared with those in wild-type Marc-145 cells. Adsorption experiments revealed that MOV10 did not affect the attachment and internalization of PRRSV. Co-immunoprecipitation and immunofluorescence co-localization analyses showed that MOV10 interacted and co-localized with the PRRSV N protein in the cytoplasm. Notably, MOV10 affected the distribution of N protein in the cytoplasm and nucleus, leading to the retention of N protein in the former. Taken together, these findings demonstrate for the first time that MOV10 inhibits PRRSV replication by restricting the nuclear import of N protein. These observations have great implications for the development of anti-PRRSV drugs and provide new insight into the role of N protein in PRRSV biology.
Collapse
Affiliation(s)
- Kuan Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Li-Wei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, PR China
| | - Yu-Jiao Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yi-Feng Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, PR China
| | - Fei Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, PR China
| | - Guo-Xin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, PR China
| | - Ling-Xue Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, PR China
| | - Wen-Ying Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Tong-Ling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, PR China
| | - Yan-Jun Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, PR China
| | - Guang-Zhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|