1
|
Kang H, Martinez MR, Aves KL, Okholm AK, Wan H, Chabot S, Malik T, Sander AF, Daniels R. Capsid virus-like particle display improves recombinant influenza neuraminidase antigen stability and immunogenicity in mice. iScience 2024; 27:110038. [PMID: 38883830 PMCID: PMC11179578 DOI: 10.1016/j.isci.2024.110038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 03/20/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Supplementing influenza vaccines with additional protective antigens such as neuraminidase (NA) is a promising strategy for increasing the breadth of the immune response. Here, we improved the immunogenicity and stability of secreted recombinant NA (rNA) tetramers by covalently conjugating them onto the surface of AP205 capsid virus-like particles (cVLPs) using a Tag/Catcher ligation system. cVLP display increased the induction of IgG2a subclass anti-NA antibodies, which exhibited cross-reactivity with an antigenically distant homologous NA. It also reduced the single dose rNA amounts needed for protection against viral challenge in mice, demonstrating a dose-sparing effect. Moreover, effective cVLP-display was achieved across different NA subtypes, even when the conjugation was performed shortly before administration. Notably, the rNA-cVLP immunogenicity was retained upon mixing or co-administering with commercial vaccines. These results highlight the potential of this approach for bolstering the protective immune responses elicited by influenza vaccines.
Collapse
Affiliation(s)
- Hyeog Kang
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Mira Rakic Martinez
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Kara-Lee Aves
- Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anna Kathrine Okholm
- Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Hongquan Wan
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Sylvie Chabot
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tahir Malik
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Adam F Sander
- Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
- AdaptVac, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| | - Robert Daniels
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
2
|
Bodle J, Vandenberg K, Laurie K, Barr IG, Zhang Y, Rockman S. An ELISA-based assay for determining haemagglutinin potency in egg, cell, or recombinant protein derived influenza vaccines. Front Immunol 2023; 14:1147028. [PMID: 37033922 PMCID: PMC10073703 DOI: 10.3389/fimmu.2023.1147028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Background The current compendial assay for haemagglutinin antigen potency in influenza vaccine is the single radial immunodiffusion (SRID) which is time consuming and can lead to delays in release of vaccine. We previously described an alternate capture and detection enzyme linked immunoassay (ELISA) that utilizes sub-type specific, sub-clade cross-reactive monoclonal antibodies (mAbs) that are haemagglutination inhibiting (HAI) and correlate with SRID. The aim of this study is to determine the applicability of ELISA across current platforms for quantitation of seasonal quadrivalent vaccine. Methods A single mAb capture and detection ELISA was employed to quantitate hemagglutinin (HA) derived from different vaccine platforms and host organisms and compared to SRID and a polyclonal antibody based ELISA. Results We selected mAbs that displayed appropriate characteristics for a stability indicating potency assay which reacted to avian, insect and mammalian derived HA. Qualification of the homologous mAb assay against egg and cell derived HA demonstrated performance similar to that of the SRID however, superiority in sensitivity and specificity against strains from both influenza B/Victoria and B/Yamagata lineages. Analysis of drifted strains across multiple seasons demonstrated continued utility of this approach, reducing the need to develop reagents each season. With modification of the assay, we were able to accurately measure HA from different platforms and process stages using a single calibrated reference standard. We demonstrated the accuracy of ELISA when testing vaccine formulations containing selected adjuvants at standard and higher concentrations. Accelerated stability analysis indicated a strong correlation in the rate of degradation between the homologous mAb ELISA and SRID but not with ELISA utilizing polyclonal antisera. Further, we demonstrated specificity was restricted to the trimeric and oligomeric forms of HA but not monomeric HA. Conclusion We believe this homologous mAb ELISA is a suitable replacement for the SRID compendial assay for HA antigen quantitation and stability assessment. Identification of suitable mAbs that are applicable across multiple vaccine platforms with extended sub-type reactivity across a number of influenza seasons, indicate that this assay has broad applicability, leading to earlier availability of seasonal and pandemic vaccines without frequent replacement of polyclonal antisera that is required with SRID.
Collapse
Affiliation(s)
- Jesse Bodle
- Vaccine Product Development, CSL Seqirus Ltd, Parkville, VIC, Australia
- *Correspondence: Jesse Bodle,
| | | | - Karen Laurie
- Vaccine Product Development, CSL Seqirus Ltd, Parkville, VIC, Australia
| | - Ian G. Barr
- Collaborating Centre for Reference and Research on Influenza, World Health Organisation, Melbourne, VIC, Australia
| | - Ying Zhang
- Vaccine Product Development, CSL Seqirus Ltd, Holly Springs, NC, United States
| | - Steven Rockman
- Vaccine Product Development, CSL Seqirus Ltd, Parkville, VIC, Australia
- Department of Immunology and Microbiology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
3
|
Design of the Recombinant Influenza Neuraminidase Antigen Is Crucial for Its Biochemical Properties and Protective Efficacy. J Virol 2021; 95:e0116021. [PMID: 34613807 DOI: 10.1128/jvi.01160-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Supplementing influenza vaccines with recombinant neuraminidase (rNA) antigens remains a promising approach for improving suboptimal vaccine efficacy. However, correlations among rNA designs, properties, and protection have not been systematically investigated. Here, we performed a comparative analysis of several rNAs produced by the baculovirus/insect cell system. The rNAs were designed with different tetramerization motifs and NA domains from a recent H1N1 vaccine strain (A/Brisbane/02/2018) and compared for enzymatic properties, antigenicity, stability, and protection in mice. We found that the enzymatic properties differ between rNAs containing the NA head domain versus the full ectodomain, the formation of higher-order rNA oligomers is tetramerization domain dependent, whereas the protective efficacy is more contingent on the combination of the tetramerization and NA domains. Following single-dose immunizations, an rNA possessing the full ectodomain and the tetramerization motif from the human vasodilator-stimulated phosphoprotein provided much better protection than an rNA with ∼10-fold more enzymatically active molecules that is comprised of the head domain and the same tetramerization motif. In contrast, these two rNA designs provided comparable protection when the tetramerization motif from the tetrabrachion protein was used instead. These findings demonstrate that individual rNAs should be thoroughly evaluated for vaccine development, as the heterologous domain combination can result in rNAs with similar key attributes that vastly differ in protection. IMPORTANCE For several decades, it has been proposed that influenza vaccines could be supplemented with recombinant neuraminidase (rNA) to improve efficacy. However, some key questions for manufacturing stable and immunogenic rNAs remain to be answered. We show here that the tetramerization motifs and NA domains included in the rNA construct design can have a profound impact on the biochemical, immunogenic, and protective properties. We also show that the single-dose immunization regimen is more informative for assessing the rNA immune response and protective efficacy, which is surprisingly more dependent on the specific combination of NA and tetramerization domains than common attributes for evaluating NA. Our findings may help to optimize the design of rNAs that can be used to improve or develop influenza vaccines.
Collapse
|
4
|
Rajendran M, Krammer F, McMahon M. The Human Antibody Response to the Influenza Virus Neuraminidase Following Infection or Vaccination. Vaccines (Basel) 2021; 9:vaccines9080846. [PMID: 34451971 PMCID: PMC8402431 DOI: 10.3390/vaccines9080846] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/03/2022] Open
Abstract
The influenza virus neuraminidase (NA) is primarily involved in the release of progeny viruses from infected cells—a critical role for virus replication. Compared to the immuno-dominant hemagglutinin, there are fewer NA subtypes, and NA experiences a slower rate of antigenic drift and reduced immune selection pressure. Furthermore, NA inhibiting antibodies prevent viral egress, thus preventing viral spread. Anti-NA immunity can lessen disease severity, reduce viral shedding, and decrease viral lung titers in humans and various animal models. As a result, there has been a concerted effort to investigate the possibilities of incorporating immunogenic forms of NA as a vaccine antigen in future vaccine formulations. In this review, we discuss NA-based immunity and describe several human NA-specific monoclonal antibodies (mAbs) that have a broad range of protection. We also review vaccine platforms that are investigating NA antigens in pre-clinical models and their potential use for next-generation influenza virus vaccines. The evidence presented here supports the inclusion of immunogenic NA in future influenza virus vaccines.
Collapse
Affiliation(s)
- Madhusudan Rajendran
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: (F.K.); (M.M.)
| | - Meagan McMahon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Correspondence: (F.K.); (M.M.)
| |
Collapse
|
5
|
Ménard-Moyon C, Bianco A, Kalantar-Zadeh K. Two-Dimensional Material-Based Biosensors for Virus Detection. ACS Sens 2020; 5:3739-3769. [PMID: 33226779 DOI: 10.1021/acssensors.0c01961] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Viral infections are one of the major causes of mortality and economic losses worldwide. Consequently, efficient virus detection methods are crucial to determine the infection prevalence. However, most detection methods face challenges related to false-negative or false-positive results, long response times, high costs, and/or the need for specialized equipment and staff. Such issues can be overcome by access to low-cost and fast response point-of-care detection systems, and two-dimensional materials (2DMs) can play a critical role in this regard. Indeed, the unique and tunable physicochemical properties of 2DMs provide many advantages for developing biosensors for viral infections with high sensitivity and selectivity. Fast, accurate, and reliable detection, even at early infection stages by the virus, can be potentially enabled by highly accessible surface interactions between the 2DMs and the analytes. High selectivity can be obtained by functionalization of the 2DMs with antibodies, nucleic acids, proteins, peptides, or aptamers, allowing for specific binding to a particular virus, viral fingerprints, or proteins released by the host organism. Multiplexed detection and discrimination between different virus strains are also feasible. In this Review, we present a comprehensive overview of the major advances of 2DM-based biosensors for the detection of viruses. We describe the main factors governing the efficient interactions between viruses and 2DMs, making them ideal candidates for the detection of viral infections. We also critically detail their advantages and drawbacks, providing insights for the development of future biosensors for virus detection. Lastly, we provide suggestions to stimulate research in the fast expanding field of 2DMs that could help in designing advanced systems for preventing virus-related pandemics.
Collapse
Affiliation(s)
- Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, Strasbourg 67000, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, Strasbourg 67000, France
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales, Kensington, New South Wales 2052, Australia
| |
Collapse
|
6
|
Mohamed SA, Samir TM, Helmy OM, Elhosseiny NM, Ali AA, El-Kholy AA, Attia AS. A Novel Surface-Exposed Polypeptide Is Successfully Employed as a Target for Developing a Prototype One-Step Immunochromatographic Strip for Specific and Sensitive Direct Detection of Staphylococcus aureus Causing Neonatal Sepsis. Biomolecules 2020; 10:E1580. [PMID: 33233724 PMCID: PMC7699858 DOI: 10.3390/biom10111580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
Neonatal sepsis is a life-threatening condition and Staphylococcus aureus is one of its major causes. However, to date, no rapid and sensitive diagnostic tool has been developed for its direct detection. Bioinformatics analyses identified a surface-exposed 112-amino acid polypeptide of the cell wall protein NWMN_1649, a surface protein involved in cell aggregation and biofilm formation, as being a species-specific and highly conserved moiety. The polypeptide was cloned, purified, and used to immunize mice to raise specific immunoglobulins. The purified antibodies were conjugated to gold nano-particles and used to assemble an immunochromatographic strip (ICS). The developed prototype ICS detected as low as 5 µg purified polypeptide and 102 CFU/mL S. aureus within 15 min. The strip showed superior ability to directly detect S. aureus in neonatal sepsis blood specimens without prior sample processing. Moreover, it showed no cross-reaction in specimens infected with two other major causes of neonatal sepsis; coagulase-negative staphylococci and Klebsiella pneumoniae. The selected NWMN_1649-derived polypeptide demonstrates success as a promising biomolecule upon which a prototype ICS has been developed. This ICS provides a rapid, direct, sensitive, and specific option for the detection of S. aureus causing neonatal sepsis. Such a tool is urgently needed especially in resources-limited countries.
Collapse
Affiliation(s)
- Sally A. Mohamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (S.A.M.); (O.M.H.); (N.M.E.)
| | - Tamer M. Samir
- Department of Microbiology and Immunology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12566, Egypt;
| | - Omneya M. Helmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (S.A.M.); (O.M.H.); (N.M.E.)
| | - Noha M. Elhosseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (S.A.M.); (O.M.H.); (N.M.E.)
| | - Aliaa A. Ali
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo 11562, Egypt;
| | - Amani A. El-Kholy
- Department of Clinical Pathology, Faculty of Medicine, Cairo University, Cairo 11562, Egypt;
| | - Ahmed S. Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (S.A.M.); (O.M.H.); (N.M.E.)
| |
Collapse
|
7
|
Giurgea LT, Morens DM, Taubenberger JK, Memoli MJ. Influenza Neuraminidase: A Neglected Protein and Its Potential for a Better Influenza Vaccine. Vaccines (Basel) 2020; 8:vaccines8030409. [PMID: 32718039 PMCID: PMC7564061 DOI: 10.3390/vaccines8030409] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/22/2022] Open
Abstract
Neuraminidase (NA) is an influenza surface protein that helps to free viruses from mucin-associated decoy receptors and to facilitate budding from infected cells. Experiments have demonstrated that anti-NA antibodies protect animals against lethal influenza challenge by numerous strains, while decreasing pulmonary viral titers, symptoms, and lung lesions. Studies in humans during the influenza A/H3N2 pandemic and in healthy volunteers challenged with influenza A/H1N1 showed that anti-NA immunity reduced symptoms, nasopharyngeal viral shedding, and infection rates. Despite the benefits of anti-NA immunity, current vaccines focus on immunity against hemagglutinin and are not standardized to NA content leading to limited and variable NA immunogenicity. Purified NA has been shown to be safe and immunogenic in humans. Supplementing current vaccines with NA may be a simple strategy to improve suboptimal effectiveness. Immunity against NA is likely to be an important component of future universal influenza vaccines.
Collapse
Affiliation(s)
- Luca T. Giurgea
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
- Correspondence:
| | - David M. Morens
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Jeffery K. Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Matthew J. Memoli
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
8
|
Eichelberger MC, Monto AS. Neuraminidase, the Forgotten Surface Antigen, Emerges as an Influenza Vaccine Target for Broadened Protection. J Infect Dis 2020; 219:S75-S80. [PMID: 30715357 DOI: 10.1093/infdis/jiz017] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
For 50 years it has been known that antibodies to neuraminidase (NA) protect against infection during seasonal and pandemic influenza outbreaks. However, NA is largely ignored in the formulation and standardization of our current influenza vaccines. There are a number of factors that contributed to this antigen being forgotten, including the lack of an easily performed test to measure NA antibody. With the availability of that test, it has been possible to show its independent contribution to protection in various situations. The challenge now is to make it possible to include known amounts of NA in investigational vaccines or to routinely measure NA content in licensed vaccines. Vaccines containing optimal amounts of NA may be particularly useful when there are antigenic changes, either drift or shift, in the hemagglutinin because NA immunity offers broad protection. It is now time to remember the NA as we work toward improved influenza vaccines.
Collapse
Affiliation(s)
- Maryna C Eichelberger
- Office of Compliance and Biologics Quality, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Arnold S Monto
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| |
Collapse
|
9
|
Byrne-Nash RT, Gillis JH, Miller DF, Bueter KM, Kuck LR, Rowlen KL. A neuraminidase potency assay for quantitative assessment of neuraminidase in influenza vaccines. NPJ Vaccines 2019; 4:3. [PMID: 30675394 PMCID: PMC6342948 DOI: 10.1038/s41541-019-0099-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/19/2018] [Indexed: 01/06/2023] Open
Abstract
Neuraminidase (NA) immunity leads to decreased viral shedding and reduced severity of influenza disease; however, NA content in influenza vaccines is currently not regulated, resulting in inconsistent quality and quantity of NA that can vary from manufacturer to manufacturer, from year to year, and from lot to lot. To address this problem, we have developed an assay for NA quantification that could be used by the industry to move toward developing influenza vaccines that induce a predictable immune response to NA. The VaxArray Influenza Seasonal NA Potency Assay (VXI-sNA) is a multiplexed sandwich immunoassay that relies on six subtype-specific monoclonal antibodies printed in microarray format and a suite of fluor-conjugated “label” antibodies. The performance of the assay as applied to a wide range of influenza vaccines is described herein. The assay demonstrated high NA subtype specificity and high sensitivity, with quantification limits ranging from 1 to 60 ng/mL and linear dynamic ranges of 24–500-fold. When compared to an enzymatic activity assay for samples exposed to thermal degradation conditions, the assay was able to track changes in protein stability over time and exhibited good correlation with enzyme activity. The assay also demonstrated excellent analytical precision with relative error ranging from 6 to 12% over day-to-day, user-to-user, and lot-to-lot variation. The high sensitivity and reproducibility of the assay enabled robust detection and quantification of NA in crude in-process samples and low-dose, adjuvanted vaccines with an accuracy of 100 ± 10%. Influenza vaccines that contain neuraminidase (NA) are associated with lower disease severity and better prognosis in vaccinated individuals, but the amount and quality of NA present in vaccines remains difficult to determine. Here, Rose Byrne-Nash and colleagues present the VaxArray Influenza Seasonal NA Potency Assay (VXI-sNA), a multiplexed sandwich immunoassay for the quantification of NA of all subtypes and for the determination of its potency. Featuring multiple NA subtype-specific antibodies printed in microarray format, the VXI-sNA showed high precision, dynamic range and reproducibility, and its results correlated well with NA enzymatic activity. This method is a step forward towards standardization of NA quantification for the assessment of stability, batch-to-batch variation and immunogenicity of NA in influenza vaccine formulations, and may help to develop influenza vaccines that trigger predictable immune responses to NA for increased protection against influenza infections.
Collapse
|
10
|
Self-enzyme chemiluminescence immunoassay capable of rapidly diagnosing the infection of influenza A (H1N1) virus. Talanta 2019; 192:189-196. [DOI: 10.1016/j.talanta.2018.09.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 11/21/2022]
|
11
|
Broadened immunity against influenza by vaccination with computationally designed influenza virus N1 neuraminidase constructs. NPJ Vaccines 2018; 3:55. [PMID: 30510776 PMCID: PMC6265323 DOI: 10.1038/s41541-018-0093-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022] Open
Abstract
Split inactivated influenza vaccines remain one of the primary preventative strategies against severe influenza disease in the population. However, current vaccines are only effective against a limited number of matched strains. The need for broadly protective vaccines is acute due to the high mutational rate of influenza viruses and multiple strain variants in circulation at any one time. The neuraminidase (NA) glycoprotein expressed on the influenza virion surface has recently regained recognition as a valuable vaccine candidate. We sought to broaden the protection provided by NA within the N1 subtype by computationally engineering consensus NA sequences. Three NA antigens (NA5200, NA7900, NA9100) were designed based on sequence clusters encompassing three major groupings of NA sequence space; (i) H1N1 2009 pandemic and Swine H1N1, (ii) historical seasonal H1N1 and (iii) H1N1 viruses ranging from 1933 till current times. Recombinant NA proteins were produced as a vaccine and used in a mouse challenge model. The design of the protein dictated the protection provided against the challenge strains. NA5200 protected against H1N1 pdm09, a Swine isolate from 1998 and NIBRG-14 (H5N1). NA7900 protected against all seasonal H1N1 viruses tested, and NA9100 showed the broadest range of protection covering all N1 viruses tested. By passive transfer studies and serological assays, the protection provided by the cluster-based consensus (CBC) designs correlated to antibodies capable of mediating NA inhibition. Importantly, sera raised to the consensus NAs displayed a broader pattern of reactivity and protection than naturally occurring NAs, potentially supporting a predictive approach to antigen design. The high variability of the influenza virus — arising from its high mutation rate and wide range of strains — limits the effectiveness of influenza vaccines unless they induce a broad immune response, a difficult task when relying on natural viral antigens. Here, Xavier Saelens, Thorsten Vogel, Ray Oomen and colleagues applied a ‘cluster-based’ consensus computational approach to design three consensus sequences of the viral protein neuroaminidase (NA) subtype 1 that induce broadly protective immune responses in vaccinated mice. NA9100, a consensus NA sequence based on H1N1 virus strains collected from 1933 to today, was protective against all N1 viruses tested. By using a computational method to integrate multiple sequences of viral proteins into one consensus protein, the researchers provide a strategy that can be applied to develop broadly protective vaccine formulations for influenza virus.
Collapse
|
12
|
Eichelberger MC, Morens DM, Taubenberger JK. Neuraminidase as an influenza vaccine antigen: a low hanging fruit, ready for picking to improve vaccine effectiveness. Curr Opin Immunol 2018; 53:38-44. [PMID: 29674167 DOI: 10.1016/j.coi.2018.03.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 12/01/2022]
Abstract
Neuraminidase (NA) plays an essential role in influenza virus replication, facilitating multicycle infection predominantly by releasing virions from infected cells. NA-inhibiting antibodies provide resistance to disease and NA-specific antibodies contribute to vaccine efficacy. The primary reason NA vaccine content and immunogenicity was not routinely measured in the past, was the lack of suitable assays to quantify NA and NA-specific antibodies. These are now available and with recent appreciation of its contribution to immunity, NA content of seasonal and pandemic vaccines is being considered. An added benefit of NA as a vaccine antigen is that many NA-specific antibodies bind to domains that are well conserved within a subtype, protecting against heterologous viruses. This suggests NA may be a good choice for inclusion in universal influenza vaccines.
Collapse
Affiliation(s)
- Maryna C Eichelberger
- Division of Biological Standards and Quality Control, Office of Compliance and Biologic Quality, CBER, FDA, New Hampshire Avenue, Silver Spring, MD 10903, USA.
| | - David M Morens
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, 33 North Dr, Bethesda, MD, USA
| |
Collapse
|
13
|
Krammer F, Fouchier RAM, Eichelberger MC, Webby RJ, Shaw-Saliba K, Wan H, Wilson PC, Compans RW, Skountzou I, Monto AS. NAction! How Can Neuraminidase-Based Immunity Contribute to Better Influenza Virus Vaccines? mBio 2018; 9:e02332-17. [PMID: 29615508 PMCID: PMC5885027 DOI: 10.1128/mbio.02332-17] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neuraminidase is one of the two surface glycoproteins of influenza A and B viruses. It has enzymatic activity that cleaves terminal sialic acid from glycans, and that activity is essential at several points in the virus life cycle. While neuraminidase is a major target for influenza antivirals, it is largely ignored in vaccine development. Current inactivated influenza virus vaccines might contain neuraminidase, but the antigen quantity and quality are varied and not standardized. While there are data that show a protective role of anti-neuraminidase immunity, many questions remain unanswered. These questions, among others, concern the targeted epitopes or antigenic sites, the potential for antigenic drift, and, connected to that, the breadth of protection, differences in induction of immune responses by vaccination versus infection, mechanisms of protection, the role of mucosal antineuraminidase antibodies, stability, and the immunogenicity of neuraminidase in vaccine formulations. Reagents for analysis of neuraminidase-based immunity are scarce, and assays are not widely used for clinical studies evaluating vaccines. However, efforts to better understand neuraminidase-based immunity have been made recently. A neuraminidase focus group, NAction!, was formed at a Centers of Excellence for Influenza Research and Surveillance meeting at the National Institutes of Health in Bethesda, MD, to promote research that helps to understand neuraminidase-based immunity and how it can contribute to the design of better and broadly protective influenza virus vaccines. Here, we review open questions and knowledge gaps that have been identified by this group and discuss how the gaps can be addressed, with the ultimate goal of designing better influenza virus vaccines.
Collapse
Affiliation(s)
- Florian Krammer
- Center for Research on Influenza Pathogenesis (CRIP), New York, New York, USA
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Centers of Excellence for Influenza Research and Surveillance (CEIRS)‡
| | - Ron A M Fouchier
- Center for Research on Influenza Pathogenesis (CRIP), New York, New York, USA
- Centers of Excellence for Influenza Research and Surveillance (CEIRS)‡
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Maryna C Eichelberger
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Richard J Webby
- Centers of Excellence for Influenza Research and Surveillance (CEIRS)‡
- St. Jude Center of Excellence for Influenza Research and Surveillance, Memphis, Tennessee, USA
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Kathryn Shaw-Saliba
- Centers of Excellence for Influenza Research and Surveillance (CEIRS)‡
- Johns Hopkins Center of Excellence for Influenza Research and Surveillance, Baltimore, Maryland, USA
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Hongquan Wan
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Patrick C Wilson
- Centers of Excellence for Influenza Research and Surveillance (CEIRS)‡
- New York Influenza Center of Excellence (NYICE), New York, New York, USA
- Department of Medicine, the Knapp Center for Lupus and Immunology Research, Section of Rheumatology, the University of Chicago, Chicago, Illinois, USA
| | - Richard W Compans
- Centers of Excellence for Influenza Research and Surveillance (CEIRS)‡
- Emory-UGA Center of Excellence for Influenza Research and Surveillance, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ioanna Skountzou
- Centers of Excellence for Influenza Research and Surveillance (CEIRS)‡
- Emory-UGA Center of Excellence for Influenza Research and Surveillance, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Arnold S Monto
- Centers of Excellence for Influenza Research and Surveillance (CEIRS)‡
- New York Influenza Center of Excellence (NYICE), New York, New York, USA
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Wood JM, Weir JP. Standardisation of inactivated influenza vaccines-Learning from history. Influenza Other Respir Viruses 2018; 12:195-201. [PMID: 29356318 PMCID: PMC5820418 DOI: 10.1111/irv.12543] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2018] [Indexed: 01/15/2023] Open
Abstract
The single radial immunodiffusion assay has been the accepted method for determining the potency of inactivated influenza vaccines since 1978. The worldwide adoption of this assay for vaccine standardisation was facilitated through collaborative studies that demonstrated a high level of reproducibility and its applicability to the different types of influenza vaccine being produced at that time. Clinical evidence indicated the relevance of SRID as a potency assay. Unique features of the SRID assay are likely responsible for its longevity even as newer technologies for vaccine characterisation have been developed and refined. Nevertheless, there are significant limitations to the SRID assay that indicate the need for improvement, and there has been a substantial amount of work undertaken in recent years to develop and evaluate alternative potency assays, including collaborative studies involving research laboratories, regulatory agencies and vaccine manufacturers. Here, we provide an overview of the history of inactivated influenza vaccine potency testing, the current state of alternative assay development and the some of the major challenges to be overcome before implementation of new assays for potency determination.
Collapse
Affiliation(s)
- John M Wood
- Formerly National Institute for Biological Standards and Control, Potters Bar, Bushey, Herts, UK
| | - Jerry P Weir
- Division of Viral Products, Center for Biologics Evaluations and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
15
|
Anik Ü, Tepeli Y, Sayhi M, Nsiri J, Diouani MF. Towards the electrochemical diagnostic of influenza virus: development of a graphene–Au hybrid nanocomposite modified influenza virus biosensor based on neuraminidase activity. Analyst 2018; 143:150-156. [DOI: 10.1039/c7an01537b] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An effective electrochemical influenza A biosensor based on a graphene–gold (Au) hybrid nanocomposite modified Au-screen printed electrode has been developed.
Collapse
Affiliation(s)
- Ülkü Anik
- Mugla Sitki Kocman University
- Faculty of Science
- Chemistry Department
- Kotekli/Mugla
- Turkey
| | - Yudum Tepeli
- Mugla Sitki Kocman University
- Faculty of Science
- Chemistry Department
- Kotekli/Mugla
- Turkey
| | - Maher Sayhi
- Laboratory of Epidemiology and Veterinary Microbiology (LEMV)
- Institut Pasteur de Tunis
- University of Tunis El Manar
- LR11IPT03
- Tunis-Belvédère 1002
| | - Jihene Nsiri
- Laboratory of Epidemiology and Veterinary Microbiology (LEMV)
- Institut Pasteur de Tunis
- University of Tunis El Manar
- LR11IPT03
- Tunis-Belvédère 1002
| | - Mohamed Fethi Diouani
- Laboratory of Epidemiology and Veterinary Microbiology (LEMV)
- Institut Pasteur de Tunis
- University of Tunis El Manar
- LR11IPT03
- Tunis-Belvédère 1002
| |
Collapse
|