1
|
Wang R, Cao X, Lu K, Chang Z, Dong X, Guo H, Wei X, Dang R, Wang J, Wang X, Xiao S, Liu H, Yang Z. Rescuing Newcastle disease virus with tag for screening viral-host interacting proteins based on highly efficient reverse genetics. Front Vet Sci 2024; 11:1418760. [PMID: 39100766 PMCID: PMC11294249 DOI: 10.3389/fvets.2024.1418760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
The interaction between viral proteins and host proteins plays a crucial role in the process of virus infecting cells. Tags such as HA, His, and Flag do not interfere with the function of fusion proteins and are commonly used to study protein-protein interactions. Adding these tags to viral proteins will address the challenge of the lack of antibodies for screening host proteins that interact with viral proteins during infection. Obtaining viruses with tagged fusion proteins is crucial. This study established a new reverse genetic system with T7 promoter and three plasmids, which efficiently rescued Newcastle disease virus (NDV) regardless of its ability to replicate in cells. Subsequently, using this system, NDV containing a HA-tagged structural protein and NDV carrying a unique tag on each structural protein were successfully rescued. These tagged viruses replicated normally and exhibited genetic stability. Based on tag antibodies, every NDV structural protein was readily detected and showed correct subcellular localization in infected cells. After infecting cells with NDV carrying HA-tagged M protein, several proteins interacting with the M protein during the infection process were screened using HA tag antibodies. The establishment of this system laid the foundation for comprehensive exploration of the interaction between NDV proteins and host proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Yangling, Xianyang, China
| |
Collapse
|
2
|
Wang H, Nan F, Zeng Z, Zhang X, Ke D, Zhang S, Zhou X, Niu D, Fan T, Jiang S, Zhang X, Wang Y, Wang B, Zhang W. Tumor cell vaccine combined with Newcastle disease virus promote immunotherapy of lung cancer. J Med Virol 2023; 95:e28554. [PMID: 36738232 DOI: 10.1002/jmv.28554] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Lung cancer is a fatal disease with the highest worldwide morbidity and mortality rates. Despite recent advances in targeted therapy and immune checkpoint inhibitors for cancer, their efficacy remained limited. Therefore, we designed a Newcastle disease virus (NDV)-modified tumor whole-cell vaccine as a therapeutic vaccine and identified its antigen presentation level to develop effective immunotherapy. Then, we calculated the therapeutic and immune-stimulating effects of NDV-modified lung cancer cell vaccine and intratumoral NDV injection combination on tumor-bearing mice. The results showed that the immunogenic cell death (ICD) expression in NDV-modified lung cancer cell vaccine stimulates dendritic cell maturation and T cell activation in vivo and in vitro. Moreover, NDV-modified lung cancer cell vaccine combined with intratumoral NDV injection could significantly inhibit tumor growth and enhance the differentiation of Th1 cells and Inflammatory cell infiltration in vivo, leading to an excellent immunotherapeutic effect. Therefore, our results revealed that NDV-modified lung cancer cell vaccine combined with intratumoral NDV injection could promote antigen presentation and induce a strong antitumor immune response, which provided a promising combined therapy strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- Hui Wang
- Department of Special Medicine, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Fulong Nan
- Department of Special Medicine, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Zhou Zeng
- Dazhou Integrated Traditional Chinese and Western Medicine Hospital, Dazhou, Sichuan, China
| | - Xueming Zhang
- Department of Special Medicine, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Dingxin Ke
- Research, Institute of Biopharmaceutical, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shuyun Zhang
- Department of Special Medicine, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xiaoqiong Zhou
- Department of Special Medicine, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Delei Niu
- Department of Special Medicine, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Tianyu Fan
- Department of Immunology, College of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Shasha Jiang
- Department of Special Medicine, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xianjuan Zhang
- Department of Special Medicine, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Yunyang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Bin Wang
- Department of Special Medicine, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Wanming Zhang
- Department of Special Medicine, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
3
|
Meng F, Cao Y, Su H, Liu T, Tian L, Zhang Y, Yang J, Xiao W, Li D. Newcastle disease virus expressing an angiogenic inhibitor exerts an enhanced therapeutic efficacy in colon cancer model. PLoS One 2022; 17:e0264896. [PMID: 35381011 PMCID: PMC8982889 DOI: 10.1371/journal.pone.0264896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/19/2022] [Indexed: 11/19/2022] Open
Abstract
Newcastle disease virus (NDV)-mediated gene therapy is a promising new approach for treatment of cancer but shows limited anti-angiogenesis. VEGF-Trap plays a vital role in anti-angiogenesis. To enhance the anti-tumor effect of NDV, VEGF-Trap gene was incorporated into the genome of rNDV in this study (named rNDV-VEGF-Trap). Results showed that rNDV-VEGF-Trap reduced cell growth ratio by 85.37% and migration ratio by 87.9% in EA.hy926 cells. In vivo studies, rNDV-VEGF-Trap reduced tumor volume and weight of CT26-bearing mice by more than 3 folds. Immunohistochemistry analysis of CD34 showed rNDV-VEGF-Trap significantly decreased the number of vascular endothelial cells in the tumor tissues. Moreover, Western blot analysis demonstrated that treatment with rNDV-VEGF-Trap significantly decreased the phosphorylation levels of AKT, ERK1/2 and STAT3 and increased the expression levels of P53, BAX and cleaved caspase-3 in the tumor tissue. In addition, to evaluate the toxicity of rNDV-VEGF-Trap, serum chemistries were analyzed. The results showed that rNDV-VEGF-Trap caused insignificant changes of creatinine levels, alanine aminotransferase and aspartate transaminase. Furthermore, administration of rNDV-VEGF-Trap did not cause the diarrhoea, decreased appetite, weight decrease and haemorrhage of the experimental mice. These data suggest that rNDV-VEGF-Trap exhibits an enhanced inhibition of CT26-bearing mice by enhancing anti-angiogenesis and apoptosis and may be a potential candidate for carcinoma therapy especially for colon cancer.
Collapse
Affiliation(s)
- Fanrui Meng
- School of Life Science, Northeast Agricultural University, Harbin, China
| | - Yukai Cao
- School of Life Science, Northeast Agricultural University, Harbin, China
| | - Han Su
- School of Life Science, Northeast Agricultural University, Harbin, China
| | - Tianyan Liu
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Limin Tian
- School of Life Science, Northeast Agricultural University, Harbin, China
| | - Yu Zhang
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Jiarui Yang
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Wei Xiao
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
- * E-mail: (DL); (WX)
| | - Deshan Li
- School of Life Science, Northeast Agricultural University, Harbin, China
- * E-mail: (DL); (WX)
| |
Collapse
|
4
|
Tavassoli A, Soleymani S, Haghparast A, Hashemi Tabar G, Bassami MR, Dehghani H. Reverse Genetics Assembly of Newcastle Disease Virus Genome Template Using Asis-Sal-Pac BioBrick Strategy. Biol Proced Online 2020; 22:9. [PMID: 32377174 PMCID: PMC7193399 DOI: 10.1186/s12575-020-00119-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 03/18/2020] [Indexed: 11/25/2022] Open
Abstract
Background The BioBrick construction as an approach in synthetic biology provides the ability to assemble various gene fragments. To date, different BioBrick strategies have been exploited for assembly and cloning of a variety of gene fragments. We present a new BioBrick strategy, here referred as Asis-Sal-Pac BioBrick, which we used for the assembly of NDV as a candidate for single-stranded non-segmented, negative-sense RNA genome viruses. Results In the present study, we isolated three NDVs from clinical samples which were classified into the VIId genotype based on their pathogenicity and phylogenetic analyses. Then, SalI, AsisI, and PacI enzymes were used to design and develop a novel BioBrick strategy, which enabled us to assemble the NDV genome, adopting the “rule of six”. In this method, in each assembly step, the restriction sites in the newly formed destination plasmid are reproduced, which will be used for the next insertion. In this study using two overlapping PCRs, the cleavage site of the F gene was also modified from 112RRQKRF117to 112GRQGRL117 in order to generate the attenuated recombinant NDV. Finally, in order to construct the recombinant NDV viruses, the plasmids harboring the assembled full-length genome of the NDV and the helper plasmids were co-transfected into T7-BHK cells. The rescue of the recombinant NDVwas confirmed by RT-PCR and HA tests. Conclusions These findings suggest that the combination of reverse genetic technology and BioBrick assembly have the potential to be applied for the development of novel vaccine candidates. This promising strategy provides an effective and reliable approach to make genotype-matched vaccines against specific NDV strains or any other virus.
Collapse
Affiliation(s)
- Amin Tavassoli
- 1Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
| | - Safoura Soleymani
- 1Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
| | - Alireza Haghparast
- 1Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran.,2Immunology Section, Department of Pathobiology , Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Gholamreza Hashemi Tabar
- 1Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
| | - Mohammad Reza Bassami
- 1Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
| | - Hesam Dehghani
- 1Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran.,3Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.,4Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
| |
Collapse
|
5
|
Host CARD11 Inhibits Newcastle Disease Virus Replication by Suppressing Viral Polymerase Activity in Neurons. J Virol 2019; 93:JVI.01499-19. [PMID: 31554683 DOI: 10.1128/jvi.01499-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023] Open
Abstract
Host factors play multiple essential roles in the replication and pathogenesis of mammalian neurotropic viruses. However, the cellular proteins of the central nervous system (CNS) involved in avian neurotropic virus infection have not been completely elucidated. Here, we employed a gene microarray to identify caspase recruitment domain-containing protein 11 (CARD11), a lymphoma-associated scaffold protein presenting brain-specific upregulated expression in a virulent neurotropic Newcastle disease virus (NDV)-infected natural host. Chicken primary neuronal cells infected with NDV appeared slightly syncytial and died quickly. CARD11 overexpression inhibited viral replication and delayed cytopathic effects; conversely, depletion of CARD11 enhanced viral replication and cytopathic effects in chicken primary neuronal cells. The inhibition of viral replication by CARD11 could not be blocked with CARD11-Bcl10-MALT1 (CBM) signalosome and NF-κB signaling inhibitors. CARD11 was found to interact directly with the viral phosphoprotein (P) through its CC1 domain and the X domain of P; this X domain also mediated the interaction between P and the viral large polymerase protein (L). The CARD11 CC1 domain and L competitively bound to P via the X domain that hindered the P-L interaction of the viral ribonucleoprotein (RNP) complex, resulting in a reduction of viral polymerase activity in a minigenome assay and inhibition of viral replication. Animal experiments further revealed that CARD11 contributed to viral replication inhibition and neuropathology in infected chicken brains. Taken together, our findings identify CARD11 as a brain-specific antiviral factor of NDV infection in avian species.IMPORTANCE Newcastle disease virus (NDV) substantially impacts the poultry industry worldwide and causes viral encephalitis and neurological disorders leading to brain damage, paralysis, and death. The mechanism of interaction between this neurotropic virus and the avian central nervous system (CNS) is largely unknown. Here, we report that host protein CARD11 presented brain-specific upregulated expression that inhibited NDV replication, which was not due to CARD11-Bcl10-MALT1 (CBM) complex-triggered activation of its downstream signaling pathways. The inhibitory mechanism of viral replication is through the CARD11 CC1 domain, and the viral large polymerase protein (L) competitively interacts with the X domain of the viral phosphoprotein (P), which hampers the P-L interaction, suppressing the viral polymerase activity and viral replication. An in vivo study indicated that CARD11 alleviated neuropathological lesions and reduced viral replication in chicken brains. These results provide insight into the interaction between NDV infection and the host defense in the CNS and a potential antiviral target for viral neural diseases.
Collapse
|
6
|
Xu X, Yi C, Yang X, Xu J, Sun Q, Liu Y, Zhao L. Tumor Cells Modified with Newcastle Disease Virus Expressing IL-24 as a Cancer Vaccine. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:213-221. [PMID: 31338417 PMCID: PMC6630061 DOI: 10.1016/j.omto.2019.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/04/2019] [Indexed: 12/24/2022]
Abstract
Interleukin-24 (IL-24) is a promising agent for cancer immunotherapy that induces apoptosis of tumor cells and enhances T cell activation and function. In order to improve the antitumor activity induced by Newcastle disease virus (NDV)-modified tumor vaccine, we generated a recombinant NDV expressing IL-24 using reverse genetics. Irradiated tumor cells infected with LX/IL-24 showed stable IL-24 expression. The cytotoxicity assay showed that LX/IL-24-infected murine melanoma cells significantly enhanced the antitumor immune response in vitro. Then, the antitumor effects of virus-infected tumor cells were examined in the murine tumor models. LX/IL-24-infected tumor cells exhibited strong antitumor effects both in prophylaxis and therapeutic models. LX/IL-24-infected tumor cells increased infiltration of CD4+ T cells and CD8+ T cells in tumor sites, and the antitumor activity of the tumor vaccine modified with LX/IL-24 was dependent on CD8+ T cells. Taken together, our data well illustrates that LX/IL-24-modified tumor cells are a promising agent for cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaojing Xu
- College of Basic Medicine and Biological Sciences, Medical Department, Soochow University, 215123 Suzhou, China
| | - Cheng Yi
- College of Basic Medicine and Biological Sciences, Medical Department, Soochow University, 215123 Suzhou, China
| | - Xiaoqin Yang
- College of Basic Medicine and Biological Sciences, Medical Department, Soochow University, 215123 Suzhou, China
| | - Jianwei Xu
- National Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Center for Tissue Engineering and Stem Cell Research, Guizhou Province Key Laboratory of Regenerative Medicine, Guizhou Medical University, 550004 Guiyang, Guizhou, China.,Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, Guizhou, China
| | - Qing Sun
- Laboratory of Animal Infectious Diseases, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.,Virus Research Unit, Department of Microbiology and Immunology, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Yonghao Liu
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, the First Affiliated Hospital of Soochow University, 215123 Suzhou, People's Republic of China
| | - Lixiang Zhao
- College of Basic Medicine and Biological Sciences, Medical Department, Soochow University, 215123 Suzhou, China
| |
Collapse
|
7
|
Reverse Genetics for Peste des Petits Ruminants Virus: Current Status and Lessons to Learn from Other Non-segmented Negative-Sense RNA Viruses. Virol Sin 2018; 33:472-483. [PMID: 30456658 PMCID: PMC6335227 DOI: 10.1007/s12250-018-0066-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/11/2018] [Indexed: 11/20/2022] Open
Abstract
Peste des petits ruminants (PPR) is a highly contagious transboundary animal disease with a severe socio-economic impact on the livestock industry, particularly in poor countries where it is endemic. Full understanding of PPR virus (PPRV) pathobiology and molecular biology is critical for effective control and eradication of the disease. To achieve these goals, establishment of stable reverse genetics systems for PPRV would play a key role. Unfortunately, this powerful technology remains less accessible and poorly documented for PPRV. In this review, we discussed the current status of PPRV reverse genetics as well as the recent innovations and advances in the reverse genetics of other non-segmented negative-sense RNA viruses that could be applicable to PPRV. These strategies may contribute to the improvement of existing techniques and/or the development of new reverse genetics systems for PPRV.
Collapse
|
8
|
Sun K, Zhao D, Liu Y, Huang C, Zhang W, Li Z. Rapid Construction of Complex Plant RNA Virus Infectious cDNA Clones for Agroinfection Using a Yeast-E. coli-Agrobacterium Shuttle Vector. Viruses 2017; 9:v9110332. [PMID: 29112135 PMCID: PMC5707539 DOI: 10.3390/v9110332] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 01/01/2023] Open
Abstract
The availability of infectious full-length clone is indispensable for reverse genetics studies of virus biology, pathology and construction of viral vectors. However, for RNA viruses with large genome sizes or those exhibiting inherent cloning difficulties, procedure to generate biologically active complementary DNA (cDNA) clones can be time-consuming or technically challenging. Here we have constructed a yeast-Escherichia coli-Agrobacterium shuttle vector that enables highly efficient homologous recombination in yeast for assembly of Agrobacterium compatible plant virus clones. Using this vector, we show that infectious cDNA clones of a plant negative-stranded RNA virus, sonchus yellow net rhabdovirus, can be rapidly assembled. In addition, one-step assembly of infectious clones of potato virus Y in yeast, either with or without intron, was readily achieved from as many as eight overlapping DNA fragments. More importantly, the recovered yeast plasmids can be transformed directly into Agrobacterium for inoculation, thereby obviating the E. coli cloning steps and associated toxicity issues. This method is rapid, highly efficient and cost-effective and should be readily applicable to a broad range of plant viruses.
Collapse
Affiliation(s)
- Kai Sun
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Danyang Zhao
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Yong Liu
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming 650021, China.
| | - Changjun Huang
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming 650021, China.
| | - Wei Zhang
- Sichuan Plant Protection Station, Chengdu 610041, China.
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|