1
|
Uranga M, Aragonés V, Daròs JA, Pasin F. Heritable CRISPR-Cas9 editing of plant genomes using RNA virus vectors. STAR Protoc 2023; 4:102091. [PMID: 36853698 PMCID: PMC9943877 DOI: 10.1016/j.xpro.2023.102091] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/05/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023] Open
Abstract
Viral vectors hold enormous potential for genome editing in plants as transient delivery vehicles of CRISPR-Cas components. Here, we describe a protocol to assemble plant viral vectors for single-guide RNA (sgRNA) delivery. The obtained viral constructs are based on compact T-DNA binary vectors of the pLX series and are delivered into Cas9-expressing plants through agroinoculation. This approach allows rapidly assessing sgRNA design for plant genome targeting, as well as the recovery of progeny with heritable mutations at targeted loci. For complete details on the use and execution of this protocol, please refer to Uranga et al. (2021)1 and Aragonés et al. (2022).2.
Collapse
Affiliation(s)
- Mireia Uranga
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
| | - Verónica Aragonés
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
| | - Fabio Pasin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
| |
Collapse
|
2
|
Pasin F. Assembly of plant virus agroinfectious clones using biological material or DNA synthesis. STAR Protoc 2022; 3:101716. [PMID: 36149792 PMCID: PMC9519601 DOI: 10.1016/j.xpro.2022.101716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/29/2022] [Accepted: 08/26/2022] [Indexed: 01/26/2023] Open
Abstract
Infectious clone technology is universally applied for biological characterization and engineering of viruses. This protocol describes procedures that implement synthetic biology advances for streamlined assembly of virus infectious clones. Here, I detail homology-based cloning using biological material, as well as SynViP assembly using type IIS restriction enzymes and chemically synthesized DNA fragments. The assembled virus clones are based on compact T-DNA binary vectors of the pLX series and are delivered to host plants by Agrobacterium-mediated inoculation. For complete details on the use and execution of this protocol, please refer to Pasin et al. (2017, 2018) and Pasin (2021).
Collapse
Affiliation(s)
- Fabio Pasin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València (CSIC-UPV), 46011 Valencia, Spain.
| |
Collapse
|
3
|
Aragonés V, Aliaga F, Pasin F, Daròs JA. Simplifying plant gene silencing and genome editing logistics by a one-Agrobacterium system for simultaneous delivery of multipartite virus vectors. Biotechnol J 2022; 17:e2100504. [PMID: 35332696 DOI: 10.1002/biot.202100504] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/17/2022] [Accepted: 03/17/2022] [Indexed: 11/07/2022]
Abstract
Viral vectors provide a quick and effective way to express exogenous sequences in eukaryotic cells and to engineer eukaryotic genomes through the delivery of CRISPR/Cas components. Here, we present JoinTRV, an improved vector system based on tobacco rattle virus (TRV) that simplifies gene silencing and genome editing logistics. Our system consists of two mini T-DNA vectors from which TRV RNA1 (pLX-TRV1) and an engineered version of TRV RNA2 (pLX-TRV2) are expressed. The two vectors have compatible origins that allow their cotransformation and maintenance into a single Agrobacterium cell, as well as their simultaneous delivery to plants by a one-Agrobacterium/two-vector approach. The JoinTRV vectors are substantially smaller than those of any known TRV vector system, and pLX-TRV2 can be easily customized to express desired sequences by one-step digestion-ligation and homology-based cloning. The system was successfully used in Nicotiana benthamiana for launching TRV infection, for recombinant protein production, as well as for robust virus-induced gene silencing (VIGS) of endogenous transcripts using bacterial suspensions at low optical densities. JoinTRV-mediated delivery of single-guide RNAs in a Cas9 transgenic host allowed somatic cell editing efficiencies of ≈90%; editing events were heritable and >50% of the progeny seedlings showed mutations at the targeted loci.
Collapse
Affiliation(s)
- Verónica Aragonés
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, Spain
| | - Flavio Aliaga
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, Spain
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima, Peru
- Centro Experimental La Molina (CELM), Instituto Nacional de Innovación Agraria (INIA), Lima, Peru
| | - Fabio Pasin
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, Spain
- School of Science, University of Padova, Padova, Italy
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, Spain
| |
Collapse
|
4
|
Construction of full-length infectious clones of turnip mosaic virus isolates infecting Perilla frutescens and genetic analysis of recently emerged strains in Korea. Arch Virol 2022; 167:1089-1098. [PMID: 35258649 PMCID: PMC8902734 DOI: 10.1007/s00705-021-05356-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/23/2021] [Indexed: 11/15/2022]
Abstract
Perilla is an annual herb with a unique aroma and taste that has been cultivated in Korea for hundreds of years. It has been widely cultivated in many Asian and European countries as a food and medicinal crop. Recently, several viruses have been reported to cause diseases in perilla in Korea, including turnip mosaic virus (TuMV), which is known as a brassica pathogen due to its significant damage to brassica crops. In this study, we determined the complete genome sequences of two new TuMV isolates originating from perilla in Korea. Full-length infectious cDNA clones of these two isolates were constructed, and their infectivity was tested by agroinfiltration of Nicotiana benthamiana and sap inoculation of Chinese cabbage and radish plants. In addition, we analyzed the phylogenetic relationship of six new Korean TuMV isolates to members of the four major groups. We also used RDP4 software to conduct recombination analysis of recent isolates from Korea, which provided new insight into the evolutionary relationships of Korean isolates of TuMV.
Collapse
|
5
|
Pasin F, Daròs JA, Tzanetakis IE. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6534904. [PMID: 35195244 PMCID: PMC9249622 DOI: 10.1093/femsre/fuac011] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Potyviridae, the largest family of known RNA viruses (realm Riboviria), belongs to the picorna-like supergroup and has important agricultural and ecological impacts. Potyvirid genomes are translated into polyproteins, which are in turn hydrolyzed to release mature products. Recent sequencing efforts revealed an unprecedented number of potyvirids with a rich variability in gene content and genomic layouts. Here, we review the heterogeneity of non-core modules that expand the structural and functional diversity of the potyvirid proteomes. We provide a family-wide classification of P1 proteinases into the functional Types A and B, and discuss pretty interesting sweet potato potyviral ORF (PISPO), putative zinc fingers, and alkylation B (AlkB)—non-core modules found within P1 cistrons. The atypical inosine triphosphate pyrophosphatase (ITPase/HAM1), as well as the pseudo tobacco mosaic virus-like coat protein (TMV-like CP) are discussed alongside homologs of unrelated virus taxa. Family-wide abundance of the multitasking helper component proteinase (HC-pro) is revised. Functional connections between non-core modules are highlighted to support host niche adaptation and immune evasion as main drivers of the Potyviridae evolutionary radiation. Potential biotechnological and synthetic biology applications of potyvirid leader proteinases and non-core modules are finally explored.
Collapse
Affiliation(s)
- Fabio Pasin
- Corresponding author: Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), UPV Building 8E, Ingeniero Fausto Elio, 46011 Valencia, Spain. E-mail:
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), 46011 Valencia, Spain
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, 72701 Fayetteville, AR, USA
| |
Collapse
|
6
|
Pasin F. Oligonucleotide abundance biases aid design of a type IIS synthetic genomics framework with plant virome capacity. Biotechnol J 2021; 16:e2000354. [PMID: 33410597 DOI: 10.1002/biot.202000354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/23/2022]
Abstract
Synthetic genomics-driven dematerialization of genetic resources facilitates flexible hypothesis testing and rapid product development. Biological sequences have compositional biases, which, I reasoned, could be exploited for engineering of enhanced synthetic genomics systems. In proof-of-concept assays reported herein, the abundance of random oligonucleotides in viral genomic components was analyzed and used for the rational design of a synthetic genomics framework with plant virome capacity (SynViP). Type IIS endonucleases with low abundance in the plant virome, as well as Golden Gate and No See'm principles were combined with DNA chemical synthesis for seamless viral clone assembly by one-step digestion-ligation. The framework described does not require subcloning steps, is insensitive to insert terminal sequences, and was used with linear and circular DNA molecules. Based on a digital template, DNA fragments were chemically synthesized and assembled by one-step cloning to yield a scar-free infectious clone of a plant virus suitable for Agrobacterium-mediated delivery. SynViP allowed rescue of a genuine virus without biological material, and has the potential to greatly accelerate biological characterization and engineering of plant viruses as well as derived biotechnological tools. Finally, computational identification of compositional biases in biological sequences might become a common standard to aid scalable biosystems design and engineering.
Collapse
Affiliation(s)
- Fabio Pasin
- School of Science, University of Padova, Padova, Italy.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
7
|
Zhao M, García B, Gallo A, Tzanetakis IE, Simón-Mateo C, García JA, Pasin F. Home-made enzymatic premix and Illumina sequencing allow for one-step Gibson assembly and verification of virus infectious clones. PHYTOPATHOLOGY RESEARCH 2020; 2:36. [PMID: 33768973 PMCID: PMC7990137 DOI: 10.1186/s42483-020-00077-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/13/2020] [Indexed: 05/06/2023]
Abstract
An unprecedented number of viruses have been discovered by leveraging advances in high-throughput sequencing. Infectious clone technology is a universal approach that facilitates the study of biology and role in disease of viruses. In recent years homology-based cloning methods such as Gibson assembly have been used to generate virus infectious clones. We detail herein the preparation of home-made cloning materials for Gibson assembly. The home-made materials were used in one-step generation of the infectious cDNA clone of a plant RNA virus into a T-DNA binary vector. The clone was verified by a single Illumina reaction and a de novo read assembly approach that required no primer walking, custom primers or reference sequences. Clone infectivity was finally confirmed by Agrobacterium-mediated delivery to host plants. We anticipate that the convenient home-made materials, one-step cloning and Illumina verification strategies described herein will accelerate characterization of viruses and their role in disease development.
Collapse
Affiliation(s)
- Mingmin Zhao
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Beatriz García
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Araiz Gallo
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Ioannis E. Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, 72701 Fayetteville, USA
| | | | | | - Fabio Pasin
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
- University of Padova, 35122 Padova, Italy
| |
Collapse
|
8
|
Gallegos JE, Rogers MF, Cialek CA, Peccoud J. Rapid, robust plasmid verification by de novo assembly of short sequencing reads. Nucleic Acids Res 2020; 48:e106. [PMID: 32890398 PMCID: PMC7544192 DOI: 10.1093/nar/gkaa727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/07/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
Plasmids are a foundational tool for basic and applied research across all subfields of biology. Increasingly, researchers in synthetic biology are relying on and developing massive libraries of plasmids as vectors for directed evolution, combinatorial gene circuit tests, and for CRISPR multiplexing. Verification of plasmid sequences following synthesis is a crucial quality control step that creates a bottleneck in plasmid fabrication workflows. Crucially, researchers often elect to forego the cumbersome verification step, potentially leading to reproducibility and—depending on the application—security issues. In order to facilitate plasmid verification to improve the quality and reproducibility of life science research, we developed a fast, simple, and open source pipeline for assembly and verification of plasmid sequences from Illumina reads. We demonstrate that our pipeline, which relies on de novo assembly, can also be used to detect contaminating sequences in plasmid samples. In addition to presenting our pipeline, we discuss the role for verification and quality control in the increasingly complex life science workflows ushered in by synthetic biology.
Collapse
Affiliation(s)
- Jenna E Gallegos
- Department of Chemical & Biological Engineering, Colorado State University, USA
| | | | - Charlotte A Cialek
- GenoFAB, Inc.,Department of Biochemistry and Molecular Biology, Colorado State University, USA
| | - Jean Peccoud
- Department of Chemical & Biological Engineering, Colorado State University, USA.,GenoFAB, Inc
| |
Collapse
|
9
|
Hu W, Qin L, Yan H, Miao W, Cui H, Liu W. Use of an Infectious cDNA Clone of Pepper Veinal Mottle Virus to Confirm the Etiology of a Disease in Capsicum chinense. PHYTOPATHOLOGY 2020; 110:80-84. [PMID: 31631804 DOI: 10.1094/phyto-08-19-0307-fi] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The pepper cultivar Yellow Lantern, one of the spiciest pepper varieties, is a local germplasm of Capsicum chinense, cultivated exclusively on Hainan Island, China. However, this variety is susceptible to viral diseases that severely affect its production. In this study, we report that pepper veinal mottle virus (PVMV) is associated with foliar chlorosis and rugosity symptoms in Yellow Lantern. To verify this correlation, we constructed a full-length cDNA clone of a PVMV isolate named HNu. The virus progeny derived from the cDNA clone replicated and moved systemically in the pepper, inducing the same symptoms as those induced by PVMV-HNu in Yellow Lantern peppers in the field. The results support that PVMV-HNu is the causal agent of foliar chlorosis and rugosity disease in Yellow Lantern. This knowledge will help in the diagnosis and prevention of disease caused by PVMV. Furthermore, the cDNA clone serves as a reverse genetic tool to study the molecular pathogenesis of PVMV.
Collapse
Affiliation(s)
- Weiyao Hu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou, Hainan 570228, China
| | - Li Qin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou, Hainan 570228, China
| | - Haixia Yan
- College of Forestry, Agricultural University of Hebei, Baoding, Hebei 071001, China
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou, Hainan 570228, China
| | - Hongguang Cui
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou, Hainan 570228, China
| | - Wenbo Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
10
|
Pasin F, Menzel W, Daròs J. Harnessed viruses in the age of metagenomics and synthetic biology: an update on infectious clone assembly and biotechnologies of plant viruses. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1010-1026. [PMID: 30677208 PMCID: PMC6523588 DOI: 10.1111/pbi.13084] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/09/2018] [Accepted: 01/15/2019] [Indexed: 05/12/2023]
Abstract
Recent metagenomic studies have provided an unprecedented wealth of data, which are revolutionizing our understanding of virus diversity. A redrawn landscape highlights viruses as active players in the phytobiome, and surveys have uncovered their positive roles in environmental stress tolerance of plants. Viral infectious clones are key tools for functional characterization of known and newly identified viruses. Knowledge of viruses and their components has been instrumental for the development of modern plant molecular biology and biotechnology. In this review, we provide extensive guidelines built on current synthetic biology advances that streamline infectious clone assembly, thus lessening a major technical constraint of plant virology. The focus is on generation of infectious clones in binary T-DNA vectors, which are delivered efficiently to plants by Agrobacterium. We then summarize recent applications of plant viruses and explore emerging trends in microbiology, bacterial and human virology that, once translated to plant virology, could lead to the development of virus-based gene therapies for ad hoc engineering of plant traits. The systematic characterization of plant virus roles in the phytobiome and next-generation virus-based tools will be indispensable landmarks in the synthetic biology roadmap to better crops.
Collapse
Affiliation(s)
- Fabio Pasin
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Wulf Menzel
- Leibniz Institute DSMZ‐German Collection of Microorganisms and Cell CulturesBraunschweigGermany
| | - José‐Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universitat Politècnica de València)ValenciaSpain
| |
Collapse
|
11
|
Tran PT, Fang M, Widyasari K, Kim KH. A plant intron enhances the performance of an infectious clone in planta. J Virol Methods 2019; 265:26-34. [PMID: 30578897 DOI: 10.1016/j.jviromet.2018.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 01/13/2023]
Abstract
Although infectious clones are fundamental tools in virology and plant pathology, their efficacy is often reduced by the instability of viral sequences in Escherichia coli. In this study, we constructed an infectious clone of PepMoV (pPepMoV) in a bacterial binary vector (pSNU1); the clone induces symptoms of PepMoV in agroinfiltrated plants. During its modification and maintenance in E. coli, however, the pPepMoV infectious clone was instable in the bacteria. Manipulation of this unstable clone in the bacterial strain DH10B led to the spontaneous formation of a recombined clone with high stability in the bacteria but with reduced infectivity due to an unwanted insertion of an E. coli sequence in the NIa-protease coding region. Replacement of this sequence with a plant intron restored infectivity and maintained plasmid stability. In addition to restoring plasmid growth in both E. coli and Agrobacterium, the presence of the intron in the PepMoV sequence enhanced the accumulation of PepMoV in agroinfiltrated leaves and resulted in symptom induction in upper systemic leaves that was nearly as strong as with PepMoV sap-inoculation. Plant introns have been previously used to stabilize plasmids in E. coli without any effect or with an unexpected lag in symptom development. In contrast, the current results demonstrated the in vivo enhancement of an infectious clone by a plant intron.
Collapse
Affiliation(s)
- Phu-Tri Tran
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Miao Fang
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kristin Widyasari
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|