1
|
Kim RK, Fitzgerald SD, Kiupel M, Faisal M. Tissue Distribution of the Piscine Novirhabdovirus Genotype IVb in Muskellunge (Esox masquinongy). Animals (Basel) 2022; 12:ani12131624. [PMID: 35804529 PMCID: PMC9264975 DOI: 10.3390/ani12131624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary A novel strain of viral hemorrhagic septicemia virus was discovered in the Great Lakes. This Great Lakes strain of the virus infects a broad range of fish species with outcomes ranging from clinical and subclinical disease, persistent viral shedding, and/or death. Among the most susceptible species to the Great Lakes strain of the virus are juvenile muskellunge. Increased susceptibility to the virus in this regionally and economic important species generated a multitude of research questions to include but not limited to host range, pathogenesis, and diagnostic tools to efficiently detect and minimize viral spread into captive fish stocks. The overarching aim of the current study focuses on assessing the early and latter stages of disease progression in a battery of traditional and non-traditional diagnostically relevant tissues in juvenile muskellunge. Tissue damage from the virus and amount of live virus in each tissue were evaluated in conjunction with advanced diagnostic methods to identify cells targeted by the virus when possible. Abstract A novel sublineage of the piscine novirhabdovirus (synonym: viral hemorrhagic septicemia virus), genotype IVb, emerged in the Laurentian Great Lakes, causing serious losses in resident fish species as early as 2003. Experimentally infected juvenile muskellunge (Esox masquinongy) were challenged with VHSV-IVb at high (1 × 105 PFU mL−1), medium (4 × 103 PFU mL−1), and low (100 PFU mL−1) doses. Samples from spleen, kidneys, heart, liver, gills, pectoral fin, large intestine, and skin/muscle were collected simultaneously from four fish at each predetermined time point and processed for VHSV-IVb reisolaton on Epitheliosum papulosum cyprini cell lines and quantification by plaque assay. The earliest reisolation of VHSV-IVb occurred in one fish from pectoral fin samples at 24 h post-infection. By 6 days post-infection (dpi), all tissue types were positive for VHSV-IVb. Statistical analysis suggested that virus levels were highest in liver, heart, and skin/muscle samples. In contrast, the kidneys and spleen exhibited reduced probability of virus recovery. Virus distribution was further confirmed by an in situ hybridization assay using a VHSV-IVb specific riboprobe. Heart muscle fibers, hepatocytes, endothelia, smooth muscle cells, and fibroblast-like cells of the pectoral fin demonstrated riboprobe labeling, thus highlighting the broad cellular tropism of VHSV-IVb. Histopathologic lesions were observed in areas where the virus was visualized.
Collapse
Affiliation(s)
- Robert K. Kim
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, 1129 Farm Lane, Room 340G, East Lansing, MI 48824, USA;
| | - Scott D. Fitzgerald
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, 4125 Beaumont Road, Building 0215, East Lansing, MI 48910, USA; (S.D.F.); (M.K.)
| | - Matti Kiupel
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, 4125 Beaumont Road, Building 0215, East Lansing, MI 48910, USA; (S.D.F.); (M.K.)
| | - Mohamed Faisal
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, 1129 Farm Lane, Room 340G, East Lansing, MI 48824, USA;
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, 4125 Beaumont Road, Building 0215, East Lansing, MI 48910, USA; (S.D.F.); (M.K.)
- Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, 1129 Farm Lane, Room 340G, East Lansing, MI 48824, USA
- Correspondence:
| |
Collapse
|
2
|
Molecular Epidemiology of Novirhabdoviruses Emerging in Iranian Trout Farms. Viruses 2021; 13:v13030448. [PMID: 33802100 PMCID: PMC7999222 DOI: 10.3390/v13030448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Novirhabdoviruses cause large epizootics and economic losses of farmed trout. In this study, we surveyed Viral hemorrhagic septicemia virus and Infectious hematopoietic and necrosis virus (VHSV and IHNV) through both monitoring and investigation of clinical outbreaks reported by farmers in the regions with major rainbow trout production in Iran from 2015 to 2019. RT-PCR assays of the kidney samples and cell culture (EPC/FHM cells) samples confirmed the presence of the viruses, with 9 VHSV and 4 IHNV isolates, in both endemic and new areas of Iran. Sequence analysis of the G gene revealed that VHSV isolates belonged to genogroup Ia, and IHNV isolates were clustered into genogroup E, both typical for isolates from European countries. A haplotype analysis based on non-homologous amino acids of the G gene supports the emergence of two lineages of IHNV from clade 1 (E-1), as well as VHSV clade 2 (Ia-2) of the European genogroups, confirming that VHSV and IHNV isolates in Iran, have originated from Europe possibly via imported eggs.
Collapse
|
3
|
Bramhachari PV. Advanced Immunotechnological Methods for Detection and Diagnosis of Viral Infections: Current Applications and Future Challenges. DYNAMICS OF IMMUNE ACTIVATION IN VIRAL DISEASES 2020. [PMCID: PMC7121190 DOI: 10.1007/978-981-15-1045-8_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Diagnosis and identification of viruses is an important component of diagnostic virology laboratory. Although various modes of diagnostic methods are now available at disposal, a vast majority of the diseases across the globe remain undiagnosed. This is largely due to the overlapping undifferentiated set of symptoms across myriad set of RNA and DNA viral diseases. As such, it becomes critical to take into consideration several factors for viral diagnosis ranging from the type and quality of specimen collected, time of specimen collection, mode of transport, accuracy, specificity, sensitivity, and the type of diagnostic method used. This chapter broadly emphasizes various methods on diagnostic virology ranging from the classical methods of diagnosis to the most recently developed molecular methods of detection of virus.
Collapse
|