1
|
Kwon SJ, Lee YJ, Cho YE, Byun HS, Seo JK. Engineering of stable infectious cDNA constructs of a fluorescently tagged tomato chlorosis virus. Virology 2024; 593:110010. [PMID: 38364352 DOI: 10.1016/j.virol.2024.110010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/18/2024]
Abstract
Tomato chlorosis virus (ToCV) is an emerging pathogen that cause severe yellow leaf disorder syndrome in tomato plants. In this study, we aimed to generate a recombinant ToCV tagged with green fluorescent protein (GFP) to enable real-time monitoring of viral infection in living plants. Transformation of the full-length cDNA construct of ToCV RNA1 into Escherichia coli resulted in instability issues, which were successfully overcome by inserting a plant intron into RNA1. Subsequently, a GFP tag was engineered into a cDNA construct of ToCV RNA2. The resulting recombinant ToCV-GFP could systemically infect Nicotiana benthamiana plants, and GFP expression was observed along the major veins. Utilizing ToCV-GFP, we also showed that ToCV engages in antagonistic relationships with two different tomato-infecting viruses in mixed infections in N. benthamiana. This study demonstrates the potential of ToCV-GFP as a valuable tool for the visual tracking of infection and movement of criniviruses in living plants.
Collapse
Affiliation(s)
- Sun-Jung Kwon
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Ye-Ji Lee
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Young-Eun Cho
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Hee-Seong Byun
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Jang-Kyun Seo
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea; Department of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.
| |
Collapse
|
2
|
Mirauti A, Tran PT, Citovsky V. Restriction-ligation-independent production of a TVCV infectious clone and a TVCV-based gene expression vector. Heliyon 2023; 9:e19855. [PMID: 37810018 PMCID: PMC10559237 DOI: 10.1016/j.heliyon.2023.e19855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/20/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Transgenic expression of proteins in plants is central to research and biotechnology, and, often, it is desirable to obtain this expression without altering the nuclear or plastid genomes. Thus, expression vectors based on plant viruses that infect multiple cells are useful; furthermore, they are also advantageous for studies of the life cycle of the virus itself. Here, we report the development of an expression vector based on a Turnip vein-clearing virus (TVCV), a tobamovirus known to easily infect two model plants, Nicotiana benthamiana, and Arabidopsis thaliana. Avoiding restriction digestion, we utilized a restriction-ligation-independent cloning approach to construct an infectious cDNA clone of TVCV from the viral RNA and then to convert this clone to a gene expression vector adapted for Gateway-based recombination cloning for transgene insertion. The functionality of the resulting vector, designated pTVCV-DEST, was validated by the expression of an autofluorescent reporter transgene following agroinoculation of the target plant.
Collapse
Affiliation(s)
- Andrea Mirauti
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | - Phu-Tri Tran
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| |
Collapse
|
3
|
Kanakala S, Xavier CAD, Martin KM, Tran HH, Redinbaugh MG, Whitfield AE. Rescue of the first alphanucleorhabdovirus entirely from cloned complementary DNA: An efficient vector for systemic expression of foreign genes in maize and insect vectors. MOLECULAR PLANT PATHOLOGY 2023; 24:788-800. [PMID: 36239302 DOI: 10.1111/mpp.13273] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/11/2023]
Abstract
Recent reverse genetics technologies have enabled genetic manipulation of plant negative-strand RNA virus (NSR) genomes. Here, we report construction of an infectious clone for the maize-infecting Alphanucleorhabdovirus maydis, the first efficient NSR vector for maize. The full-length infectious clone was established using agrobacterium-mediated delivery of full-length maize mosaic virus (MMV) antigenomic RNA and the viral core proteins (nucleoprotein N, phosphoprotein P, and RNA-directed RNA polymerase L) required for viral transcription and replication into Nicotiana benthamiana. Insertion of intron 2 ST-LS1 into the viral L gene increased stability of the infectious clone in Escherichia coli and Agrobacterium tumefaciens. To monitor virus infection in vivo, a green fluorescent protein (GFP) gene was inserted in between the N and P gene junctions to generate recombinant MMV-GFP. Complementary DNA (cDNA) clones of MMV-wild type (WT) and MMV-GFP replicated in single cells of agroinfiltrated N. benthamiana. Uniform systemic infection and high GFP expression were observed in maize inoculated with extracts of the infiltrated N. benthamiana leaves. Insect vectors supported virus infection when inoculated via feeding on infected maize or microinjection. Both MMV-WT and MMV-GFP were efficiently transmitted to maize by planthopper vectors. The GFP reporter gene was stable in the virus genome and expression remained high over three cycles of transmission in plants and insects. The MMV infectious clone will be a versatile tool for expression of proteins of interest in maize and cross-kingdom studies of virus replication in plant and insect hosts.
Collapse
Affiliation(s)
- Surapathrudu Kanakala
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - César A D Xavier
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Kathleen M Martin
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Hong Hanh Tran
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, USA
| | | | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
4
|
Shakir S, Zaidi SSEA, Hashemi FSG, Nyirakanani C, Vanderschuren H. Harnessing plant viruses in the metagenomics era: from the development of infectious clones to applications. TRENDS IN PLANT SCIENCE 2023; 28:297-311. [PMID: 36379846 DOI: 10.1016/j.tplants.2022.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Recent metagenomic studies which focused on virus characterization in the entire plant environment have revealed a remarkable viral diversity in plants. The exponential discovery of viruses also requires the concomitant implementation of high-throughput methods to perform their functional characterization. Despite several limitations, the development of viral infectious clones remains a method of choice to understand virus biology, their role in the phytobiome, and plant resilience. Here, we review the latest approaches for efficient characterization of plant viruses and technical advances built on high-throughput sequencing and synthetic biology to streamline assembly of viral infectious clones. We then discuss the applications of plant viral vectors in fundamental and applied plant research as well as their technical and regulatory limitations, and we propose strategies for their safer field applications.
Collapse
Affiliation(s)
- Sara Shakir
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| | - Syed Shan-E-Ali Zaidi
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Farahnaz Sadat Golestan Hashemi
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Chantal Nyirakanani
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium; Department of Crop Science, School of Agriculture, University of Rwanda, Musanze, Rwanda
| | - Hervé Vanderschuren
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium; Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Biosystems Department, KU Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Pasin F. Assembly of plant virus agroinfectious clones using biological material or DNA synthesis. STAR Protoc 2022; 3:101716. [PMID: 36149792 PMCID: PMC9519601 DOI: 10.1016/j.xpro.2022.101716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/29/2022] [Accepted: 08/26/2022] [Indexed: 01/26/2023] Open
Abstract
Infectious clone technology is universally applied for biological characterization and engineering of viruses. This protocol describes procedures that implement synthetic biology advances for streamlined assembly of virus infectious clones. Here, I detail homology-based cloning using biological material, as well as SynViP assembly using type IIS restriction enzymes and chemically synthesized DNA fragments. The assembled virus clones are based on compact T-DNA binary vectors of the pLX series and are delivered to host plants by Agrobacterium-mediated inoculation. For complete details on the use and execution of this protocol, please refer to Pasin et al. (2017, 2018) and Pasin (2021).
Collapse
Affiliation(s)
- Fabio Pasin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València (CSIC-UPV), 46011 Valencia, Spain.
| |
Collapse
|
6
|
Fang M, Yu J, Kwak HR, Kim KH. Identification of viral genes involved in pepper mottle virus replication and symptom development in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2022; 13:1048074. [PMID: 36388582 PMCID: PMC9650420 DOI: 10.3389/fpls.2022.1048074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Pepper mottle virus (PepMoV) infects primarily Capsicum species, including pepper and bell pepper which are important vegetable and spice crops in Korea. We have previously collected 13 PepMoV isolates from nine regions comprising five provinces, causing different symptoms on inoculated indicator host plants in Korea. To further identify the responsible symptom determinant(s) and explore viral protein functions of PepMoV, two out of 13 isolates, including 134 and 205136, were used in this study. Isolate 134 causes necrosis and yellowing, while 205136 causes severe mottle and yellowing symptoms on Nicotiana benthamiana. All chimeric and site-directed mutants contain the PepMoV 134 genome as a backbone with specific regions switched for those from counterparts of PepMoV 205136. Effects of all mutants compared with 134 after inoculation onto N. benthamiana by agroinfiltration. Results from our study provide direct evidence that the helper component-proteinase (HC-Pro) and the nuclear inclusion protein b (NIb)-coat protein (CP) regions are involved in virus accumulation and symptom determinants. In addition, we mapped to amino acid residues tyrosine, glycine, and leucine at position 360, 385, and 527, respectively, in the HC-Pro region participate in faster viral accumulation or movement in the plant. The residue valine at position 2773 of NIb plays an essential role in isolate 134 symptom development. As part of this study, we seek to gain insight into viral factors involved in the PepMoV infection cycle and a better understanding of plant-virus interactions. These findings complement the insufficiency of the gene function study of the PepMoV virus and provide a novel perspective for the protein function study of the Potyvirus.
Collapse
Affiliation(s)
- Miao Fang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Jisuk Yu
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Hae-Ryun Kwak
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
7
|
Pepper Mottle Virus and Its Host Interactions: Current State of Knowledge. Viruses 2021; 13:v13101930. [PMID: 34696360 PMCID: PMC8539092 DOI: 10.3390/v13101930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/08/2023] Open
Abstract
Pepper mottle virus (PepMoV) is a destructive pathogen that infects various solanaceous plants, including pepper, bell pepper, potato, and tomato. In this review, we summarize what is known about the molecular characteristics of PepMoV and its interactions with host plants. Comparisons of symptom variations caused by PepMoV isolates in plant hosts indicates a possible relationship between symptom development and genetic variation. Researchers have investigated the PepMoV–plant pathosystem to identify effective and durable genes that confer resistance to the pathogen. As a result, several recessive pvr or dominant Pvr resistance genes that confer resistance to PepMoV in pepper have been characterized. On the other hand, the molecular mechanisms underlying the interaction between these resistance genes and PepMoV-encoded genes remain largely unknown. Our understanding of the molecular interactions between PepMoV and host plants should be increased by reverse genetic approaches and comprehensive transcriptomic analyses of both the virus and the host genes.
Collapse
|
8
|
Tran PT, Citovsky V. Receptor-like kinase BAM1 facilitates early movement of the Tobacco mosaic virus. Commun Biol 2021; 4:511. [PMID: 33931721 PMCID: PMC8087827 DOI: 10.1038/s42003-021-02041-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/26/2021] [Indexed: 02/02/2023] Open
Abstract
Cell-to-cell movement is an important step for initiation and spreading of virus infection in plants. This process occurs through the intercellular connections, termed plasmodesmata (PD), and is usually mediated by one or more virus-encoded movement proteins (MP) which interact with multiple cellular factors, among them protein kinases that usually have negative effects on MP function and virus movement. In this study, we report physical and functional interaction between MP of Tobacco mosaic virus (TMV), the paradigm of PD-moving proteins, and a receptor-like kinase BAM1 from Arabidopsis and its homolog from Nicotiana benthamiana. The interacting proteins accumulated in the PD regions, colocalizing with a PD marker. Reversed genetics experiments, using BAM1 gain-of-function and loss-of-function plants, indicated that BAM1 is required for efficient spread and accumulation the virus during initial stages of infection of both plant species by TMV. Furthermore, BAM1 was also required for the efficient cell-to-cell movement of TMV MP, suggesting that BAM1 interacts with TMV MP to support early movement of the virus. Interestingly, this role of BAM1 in viral movement did not require its protein kinase activity. Thus, we propose that association of BAM1 with TMV MP at PD facilitates the MP transport through PD, which, in turn, enhances the spread of the viral infection.
Collapse
Affiliation(s)
- Phu-Tri Tran
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, USA.
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, USA
| |
Collapse
|
9
|
Tran PT, Zhang CF, Citovsky V. Rapid generation of inoculum of a plant RNA virus using overlap PCR. Virology 2021; 553:46-50. [PMID: 33220619 PMCID: PMC8041095 DOI: 10.1016/j.virol.2020.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 11/30/2022]
Abstract
We have developed an efficient method to rapidly generate infectious inoculum of a plant RNA virus and confirmed its infectivity by mechanical inoculation. The method takes advantage of overlap PCR to bypass the cloning steps, which makes it relatively simple, rapid, and inexpensive compared to the traditional methods. Using this approach, inoculum of a tobamovirus, Turnip vein clearing virus (TVCV), was generated. PCR products specific for the 35S promoter and TVCV genome were used as templates for overlap PCR to form a single product containing the full-length TVCV cDNA under the control of the double 35S promoter, and the entire process took only 8 h. This inoculum was infectious in Nicotiana benthamiana, and its infectivity was ca. 67% compared to 0% and 100% with negative and positive controls, respectively. Thus, this rapid method generates efficient infectious inoculum for a plant RNA virus.
Collapse
Affiliation(s)
- Phu-Tri Tran
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, 11794-5215, USA.
| | - Chao Feng Zhang
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, 11794-5215, USA
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, 11794-5215, USA
| |
Collapse
|
10
|
Zhao M, García B, Gallo A, Tzanetakis IE, Simón-Mateo C, García JA, Pasin F. Home-made enzymatic premix and Illumina sequencing allow for one-step Gibson assembly and verification of virus infectious clones. PHYTOPATHOLOGY RESEARCH 2020; 2:36. [PMID: 33768973 PMCID: PMC7990137 DOI: 10.1186/s42483-020-00077-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/13/2020] [Indexed: 05/06/2023]
Abstract
An unprecedented number of viruses have been discovered by leveraging advances in high-throughput sequencing. Infectious clone technology is a universal approach that facilitates the study of biology and role in disease of viruses. In recent years homology-based cloning methods such as Gibson assembly have been used to generate virus infectious clones. We detail herein the preparation of home-made cloning materials for Gibson assembly. The home-made materials were used in one-step generation of the infectious cDNA clone of a plant RNA virus into a T-DNA binary vector. The clone was verified by a single Illumina reaction and a de novo read assembly approach that required no primer walking, custom primers or reference sequences. Clone infectivity was finally confirmed by Agrobacterium-mediated delivery to host plants. We anticipate that the convenient home-made materials, one-step cloning and Illumina verification strategies described herein will accelerate characterization of viruses and their role in disease development.
Collapse
Affiliation(s)
- Mingmin Zhao
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Beatriz García
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Araiz Gallo
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Ioannis E. Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, 72701 Fayetteville, USA
| | | | | | - Fabio Pasin
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
- University of Padova, 35122 Padova, Italy
| |
Collapse
|
11
|
Kannan M, Zainal Z, Ismail I, Baharum SN, Bunawan H. Application of Reverse Genetics in Functional Genomics of Potyvirus. Viruses 2020; 12:v12080803. [PMID: 32722532 PMCID: PMC7472138 DOI: 10.3390/v12080803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
Numerous potyvirus studies, including virus biology, transmission, viral protein function, as well as virus–host interaction, have greatly benefited from the utilization of reverse genetic techniques. Reverse genetics of RNA viruses refers to the manipulation of viral genomes, transfection of the modified cDNAs into cells, and the production of live infectious progenies, either wild-type or mutated. Reverse genetic technology provides an opportunity of developing potyviruses into vectors for improving agronomic traits in plants, as a reporter system for tracking virus infection in hosts or a production system for target proteins. Therefore, this review provides an overview on the breakthroughs achieved in potyvirus research through the implementation of reverse genetic systems.
Collapse
Affiliation(s)
- Maathavi Kannan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
| | - Zamri Zainal
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Ismanizan Ismail
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
| | - Hamidun Bunawan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
- Correspondence: ; Tel.: +60-3-8921-4554
| |
Collapse
|
12
|
Pasin F, Menzel W, Daròs J. Harnessed viruses in the age of metagenomics and synthetic biology: an update on infectious clone assembly and biotechnologies of plant viruses. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1010-1026. [PMID: 30677208 PMCID: PMC6523588 DOI: 10.1111/pbi.13084] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/09/2018] [Accepted: 01/15/2019] [Indexed: 05/12/2023]
Abstract
Recent metagenomic studies have provided an unprecedented wealth of data, which are revolutionizing our understanding of virus diversity. A redrawn landscape highlights viruses as active players in the phytobiome, and surveys have uncovered their positive roles in environmental stress tolerance of plants. Viral infectious clones are key tools for functional characterization of known and newly identified viruses. Knowledge of viruses and their components has been instrumental for the development of modern plant molecular biology and biotechnology. In this review, we provide extensive guidelines built on current synthetic biology advances that streamline infectious clone assembly, thus lessening a major technical constraint of plant virology. The focus is on generation of infectious clones in binary T-DNA vectors, which are delivered efficiently to plants by Agrobacterium. We then summarize recent applications of plant viruses and explore emerging trends in microbiology, bacterial and human virology that, once translated to plant virology, could lead to the development of virus-based gene therapies for ad hoc engineering of plant traits. The systematic characterization of plant virus roles in the phytobiome and next-generation virus-based tools will be indispensable landmarks in the synthetic biology roadmap to better crops.
Collapse
Affiliation(s)
- Fabio Pasin
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Wulf Menzel
- Leibniz Institute DSMZ‐German Collection of Microorganisms and Cell CulturesBraunschweigGermany
| | - José‐Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universitat Politècnica de València)ValenciaSpain
| |
Collapse
|