1
|
Silva AJD, de Jesus ALS, Leal LRS, de Macêdo LS, da Silva Barros BR, de Sousa GF, da Paz Leôncio Alves S, Pena LJ, de Melo CML, de Freitas AC. Whole Yeast Vaccine Displaying ZIKV B and T Cell Epitopes Induces Cellular Immune Responses in the Murine Model. Pharmaceutics 2023; 15:1898. [PMID: 37514084 PMCID: PMC10385271 DOI: 10.3390/pharmaceutics15071898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Improving antigen presentation is crucial for the success of immunization strategies. Yeasts are classically used as biofactories to produce recombinant proteins and are efficient vehicles for antigen delivery, in addition to their adjuvant properties. Despite the absence of epidemic outbreaks, several vaccine approaches continue to be developed for Zika virus infection. The development of these prophylactic strategies is fundamental given the severity of clinical manifestations, mainly due to viral neurotropism. The present study aimed to evaluate in vivo the immune response induced by P. pastoris recombinant strains displaying epitopes of the envelope (ENV) and NS1 ZIKV proteins. Intramuscular immunization with heat-attenuated yeast enhanced the secretion of IL-6, TNF-α, and IFN-γ, in addition to the activation of CD4+ and CD8+ T cells, in BALB/c mice. P. pastoris displaying ENV epitopes induced a more robust immune response, increasing immunoglobulin production, especially IgG isotypes. Both proposed vaccines showed the potential to induce immune responses without adverse effects, confirming the safety of administering P. pastoris as a vaccine vehicle. Here, we demonstrated, for the first time, the evaluation of a vaccine against ZIKV based on a multiepitope construct using yeast as a delivery system and reinforcing the applicability of P. pastoris as a whole-cell vaccine.
Collapse
Affiliation(s)
- Anna Jéssica Duarte Silva
- Laboratory of Molecular Studies and Experimental Therapy-LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | | | - Lígia Rosa Sales Leal
- Laboratory of Molecular Studies and Experimental Therapy-LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Larissa Silva de Macêdo
- Laboratory of Molecular Studies and Experimental Therapy-LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | | | | | | | - Lindomar José Pena
- Department of Virology and Experimental Therapy, Instituto Aggeu Magalhães, Oswaldo Cruz Foundation, Recife 50670-901, Brazil
| | | | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy-LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| |
Collapse
|
2
|
Petphong V, Kosoltanapiwat N, Limkittikul K, Maneekan P, Chatchen S, Jittmittraphap A, Sriburin P, Chattanadee S, Leaungwutiwong P. Detection of Anti-ZIKV NS1 IgA, IgM, and Combined IgA/IgM and Identification of IL-4 and IL-10 as Potential Biomarkers for Early ZIKV and DENV Infections in Hyperendemic Regions, Thailand. Trop Med Infect Dis 2023; 8:tropicalmed8050284. [PMID: 37235332 DOI: 10.3390/tropicalmed8050284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The frequency of Zika virus (ZIKV)-specific IgA and IgM and the cytokine expression profile of ZIKV-infected patients in hyperendemic areas remain unclear. This study investigated the rates of ZIKV non-structural protein 1 (NS1)-specific IgA and IgM and evaluated serum cytokine levels of ZIKV and Dengue virus (DENV) cases in Thailand to identify potential diagnostic biomarkers, elucidate the immunity against ZIKV and DENV, and investigate the association between cytokine levels and ZIKV symptoms. Low rates of positivity for ZIKV NS1-specific IgA and IgM were detected in our study. ZIKV NS1 IgA/M (11%, 11/101) in combination was more frequently detected than ZIKV NS1 IgM (2%, 2/101) or ZIKV NS1 IgA (4%, 4/96) alone, especially in acute ZIKV cases with previous DENV exposure (14%, 10/72). Cytokine analysis showed that both ZIKV and DENV infections induced polyfunctional immunity, and the latter triggered more prolonged responses. The existence of significant differences in IL-4 and IL-10 levels between acute ZIKV and acute DENV cases suggested that IL-4 (p = 0.0176) and IL-10 (p = 0.0003) may represent biomarkers for acute ZIKV and acute DENV infections, respectively. Analysis of the association between increased cytokine levels and ZIKV symptoms indicated that CXCL10 (p = 0.0029) was associated with exanthema, while IL-5 (p = 0.0496) was linked to headache. The detection of ZIKV NS1 IgA and IgM in combination may enhance the diagnosis of early ZIKV infection, particularly when levels of IgM or IgA alone are low or undetectable. IL-4 and IL-10 may serve as targets for the development of diagnostic tools to detect ZIKV and DENV infections early, respectively, in flavivirus-endemic regions.
Collapse
Affiliation(s)
- Vajee Petphong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Nathamon Kosoltanapiwat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Kriengsak Limkittikul
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Pannamas Maneekan
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Supawat Chatchen
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Akanitt Jittmittraphap
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Pimolpachr Sriburin
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Siriporn Chattanadee
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Pornsawan Leaungwutiwong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
3
|
Bharucha T, Ayhan N, Pastorino B, Rattanavong S, Vongsouvath M, Mayxay M, Changthongthip A, Sengvilaipaseuth O, Phonemixay O, Pommier JD, Gorman C, Zitzmann N, Newton PN, de Lamballerie X, Dubot-Pérès A. Immunoglobulin M seroneutralization for improved confirmation of Japanese encephalitis virus infection in a flavivirus-endemic area. Trans R Soc Trop Med Hyg 2022; 116:1032-1042. [PMID: 35593182 PMCID: PMC9623734 DOI: 10.1093/trstmh/trac036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/21/2022] [Accepted: 03/28/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The mainstay of diagnostic confirmation of acute Japanese encephalitis (JE) involves detection of anti-JE virus (JEV) immunoglobulin M (IgM) by enzyme-linked immunosorbent assay (ELISA). Limitations in the specificity of this test are increasingly apparent with the introduction of JEV vaccinations and the endemicity of other cross-reactive flaviviruses. Virus neutralization testing (VNT) is considered the gold standard, but it is challenging to implement and interpret. We performed a pilot study to assess IgG depletion prior to VNT for detection of anti-JEV IgM neutralizing antibodies (IgM-VNT) as compared with standard VNT. METHODS We evaluated IgM-VNT in paired sera from anti-JEV IgM ELISA-positive patients (JE n=35) and negative controls of healthy flavivirus-naïve (n=10) as well as confirmed dengue (n=12) and Zika virus (n=4) patient sera. IgM-VNT was subsequently performed on single sera from additional JE patients (n=76). RESULTS Anti-JEV IgG was detectable in admission serum of 58% of JE patients. The positive, negative and overall percentage agreement of IgM-VNT as compared with standard VNT was 100%. A total of 12/14 (86%) patient samples were unclassified by VNT and, with sufficient sample available for IgG depletion and IgG ELISA confirming depletion, were classified by IgM-VNT. IgM-VNT enabled JE case classification in 72/76 (95%) patients for whom only a single sample was available. CONCLUSIONS The novel approach has been readily adapted for high-throughput testing of single patient samples and it holds promise for incorporation into algorithms for use in reference centres.
Collapse
Affiliation(s)
- Tehmina Bharucha
- Department of Biochemistry, University of Oxford, Oxford, UK
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Nazli Ayhan
- Unité des Virus Émergents, Aix-Marseille Univ-IRD 190-Inserm 1207, Marseille, France
| | - Boris Pastorino
- Unité des Virus Émergents, Aix-Marseille Univ-IRD 190-Inserm 1207, Marseille, France
| | - Sayaphet Rattanavong
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Manivanh Vongsouvath
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Institute of Research and Education Development, University of Health Sciences, Ministry of Health, Vientiane, Lao PDR
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Anisone Changthongthip
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Onanong Sengvilaipaseuth
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Ooyanong Phonemixay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Jean-David Pommier
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
- Institut Pasteur, Biology of Infection Unit, Paris, France
- Inserm U1117, Paris, France
- Intensive Care Department, University Hospital of Guadeloupe, France
| | | | - Nicole Zitzmann
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Paul N Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xavier de Lamballerie
- Unité des Virus Émergents, Aix-Marseille Univ-IRD 190-Inserm 1207, Marseille, France
| | - Audrey Dubot-Pérès
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Unité des Virus Émergents, Aix-Marseille Univ-IRD 190-Inserm 1207, Marseille, France
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Morales I, Rosenberger KD, Magalhaes T, Morais CNL, Braga C, Marques ETA, Calvet GA, Damasceno L, Brasil P, Bispo de Filippis AM, Tami A, Bethencourt S, Alvarez M, Martínez PA, Guzman MG, Souza Benevides B, Caprara A, Quyen NTH, Simmons CP, Wills B, de Lamballerie X, Drexler JF, Jaenisch T. Diagnostic performance of anti-Zika virus IgM, IgAM and IgG ELISAs during co-circulation of Zika, dengue, and chikungunya viruses in Brazil and Venezuela. PLoS Negl Trop Dis 2021; 15:e0009336. [PMID: 33872309 PMCID: PMC8084345 DOI: 10.1371/journal.pntd.0009336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/29/2021] [Accepted: 03/26/2021] [Indexed: 12/30/2022] Open
Abstract
Background Serological diagnosis of Zika virus (ZIKV) infection is challenging because of the antibody cross-reactivity among flaviviruses. At the same time, the role of Nucleic Acid Testing (NAT) is limited by the low proportion of symptomatic infections and the low average viral load. Here, we compared the diagnostic performance of commercially available IgM, IgAM, and IgG ELISAs in sequential samples during the ZIKV and chikungunya (CHIKV) epidemics and co-circulation of dengue virus (DENV) in Brazil and Venezuela. Methodology/Principal findings Acute (day of illness 1–5) and follow-up (day of illness ≥ 6) blood samples were collected from nine hundred and seven symptomatic patients enrolled in a prospective multicenter study between June 2012 and August 2016. Acute samples were tested by RT-PCR for ZIKV, DENV, and CHIKV. Acute and follow-up samples were tested for IgM, IgAM, and IgG antibodies to ZIKV using commercially available ELISAs. Among follow-up samples with a RT-PCR confirmed ZIKV infection, anti-ZIKV IgAM sensitivity was 93.5% (43/46), while IgM and IgG exhibited sensitivities of 30.3% (10/33) and 72% (18/25), respectively. An additional 24% (26/109) of ZIKV infections were detected via IgAM seroconversion in ZIKV/DENV/CHIKV RT-PCR negative patients. The specificity of anti-ZIKV IgM was estimated at 93% and that of IgAM at 85%. Conclusions/Significance Our findings exemplify the challenges of the assessment of test performance for ZIKV serological tests in the real-world setting, during co-circulation of DENV, ZIKV, and CHIKV. However, we can also demonstrate that the IgAM immunoassay exhibits superior sensitivity to detect ZIKV RT-PCR confirmed infections compared to IgG and IgM immunoassays. The IgAM assay also proves to be promising for detection of anti-ZIKV seroconversions in sequential samples, both in ZIKV PCR-positive as well as PCR-negative patients, making this a candidate assay for serological monitoring of pregnant women in future ZIKV outbreaks. Zika virus (ZIKV) is transmitted through the bite of infected Aedes mosquitos but can also be transmitted sexually or vertically from mother-to-child. The same mosquitoes transmit dengue virus (DENV) and chikungunya virus (CHIKV), which cause similar clinical syndromes. The ZIKV epidemics in the Pacific and the Americas that occurred between 2015 and 2017 were linked to congenital abnormalities, most prominently microcephaly, in newborns. Because most infections are asymptomatic, diagnosis via indirect serological assays is an important strategy. On the other hand, many serological assays are affected by cross-reactivity resulting from prior infections by closely related viruses, such as DENV. This study evaluated three commercially available and widely used immunoassays that detect IgG, IgM or IgA and M (IgAM) antibodies to ZIKV. Our results suggest that the IgAM test performs best by detecting around 90% of RT-PCR confirmed infections. We also detected additional infections that were not detected by RT-PCR. The strength of this study is that it was carried out in two different countries of the American region where several arboviruses are endemic and that sequential blood samples from individual patients were available to evaluate the performance of the tests over time.
Collapse
Affiliation(s)
- Ivonne Morales
- Section Clinical Tropical Medicine, Department for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
- German Centre for Infection Research (DZIF), associated partner Heidelberg University Hospital, Heidelberg, Germany
| | - Kerstin D. Rosenberger
- Section Clinical Tropical Medicine, Department for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
- German Centre for Infection Research (DZIF), associated partner Heidelberg University Hospital, Heidelberg, Germany
| | - Tereza Magalhaes
- Center for Vector-Borne Infectious Diseases (CVID), Department of Microbiology, Immunology and Pathology, Colorado State University (CSU), Fort Collins, Colorado, United States of America
| | - Clarice N. L. Morais
- Laboratory of Virology and Experimental Therapeutics, Aggeu Magalhaes Institute, Oswaldo Cruz Foundation, Recife, Brazil
| | - Cynthia Braga
- Department of Parasitology, Aggeu Magalhaes Institute, Oswaldo Cruz Foundation, Recife, Brazil
- Institute of Integral Medicine Professor Fernando Figueira (Instituto de Medicina Integral Professor Fernando Figueira-IMIP), Recife, Brazil
| | - Ernesto T. A. Marques
- Laboratory of Virology and Experimental Therapeutics, Aggeu Magalhaes Institute, Oswaldo Cruz Foundation, Recife, Brazil
- Department of Infectious Diseases, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Guilherme Amaral Calvet
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Luana Damasceno
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Patricia Brasil
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Adriana Tami
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- Facultad de Ciencias de la Salud, Universidad de Carabobo,
Valencia, Venezuela
| | - Sarah Bethencourt
- Facultad de Ciencias de la Salud, Universidad de Carabobo,
Valencia, Venezuela
| | | | | | | | | | | | - Nguyen Than Ha Quyen
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Cameron P. Simmons
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- Institute for Vector-Borne Disease, Monash University, Melbourne, Australia
| | - Bridget Wills
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
| | - Xavier de Lamballerie
- Unité des Virus Emergents (UVE Aix Marseille Université, IRD 190, Inserm 1207-IHUMéditerranée Infection), Marseille, France
| | - Jan Felix Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Sechenov University, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Moscow, Russia
- German Centre for Infection Research (DZIF), associated partner Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Jaenisch
- Section Clinical Tropical Medicine, Department for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
- German Centre for Infection Research (DZIF), associated partner Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Global Health (HIGH), Heidelberg University Hospital, Heidelberg, Germany
- * E-mail:
| | | |
Collapse
|
5
|
Vannella KM, Stein S, Connelly M, Swerczek J, Amaro-Carambot E, Coyle EM, Babyak A, Winkler CW, Saturday G, Gai ND, Hammoud DA, Dowd KA, Valencia LP, Ramos-Benitez MJ, Kindrachuk J, Pierson TC, Peterson KE, Brenchley JM, Whitehead SS, Khurana S, Herbert R, Chertow DS. Nonhuman primates exposed to Zika virus in utero are not protected against reinfection at 1 year postpartum. Sci Transl Med 2020; 12:eaaz4997. [PMID: 33115950 PMCID: PMC11256112 DOI: 10.1126/scitranslmed.aaz4997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
There is limited information about the impact of Zika virus (ZIKV) exposure in utero on the anti-ZIKV immune responses of offspring. We infected six rhesus macaque dams with ZIKV early or late in pregnancy and studied four of their offspring over the course of a year postpartum. Despite evidence of ZIKV exposure in utero, we observed no structural brain abnormalities in the offspring. We detected infant-derived ZIKV-specific immunoglobulin A antibody responses and T cell memory responses during the first year postpartum in the two offspring born to dams infected with ZIKV early in pregnancy. Critically, although the infants had acquired some immunological memory of ZIKV, it was not sufficient to protect them against reinfection with ZIKV at 1 year postpartum. The four offspring reexposed to ZIKV at 1 year postpartum all survived but exhibited acute viremia and viral tropism to lymphoid tissues; three of four reexposed offspring exhibited spinal cord pathology. These data suggest that macaque infants born to dams infected with ZIKV during pregnancy remain susceptible to postnatal infection and consequent neuropathology.
Collapse
Affiliation(s)
- Kevin M Vannella
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sydney Stein
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Connelly
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joanna Swerczek
- Experimental Primate Virology Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Poolesville, MD 20837, USA
| | - Emerito Amaro-Carambot
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth M Coyle
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Ashley Babyak
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Clayton W Winkler
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Neville D Gai
- Center for Infectious Disease Imaging, Radiology and Imaging Services, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Services, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kimberly A Dowd
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luis Perez Valencia
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marcos J Ramos-Benitez
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason Kindrachuk
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Emerging Viruses, Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Theodore C Pierson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karin E Peterson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steve S Whitehead
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Richard Herbert
- Experimental Primate Virology Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Poolesville, MD 20837, USA
| | - Daniel S Chertow
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Caracciolo I, Mora-Cardenas E, Aloise C, Carletti T, Segat L, Burali MS, Chiarvesio A, Totis V, Avšič–Županc T, Mastrangelo E, Manfroni G, D’Agaro P, Marcello A. Comprehensive response to Usutu virus following first isolation in blood donors in the Friuli Venezia Giulia region of Italy: Development of recombinant NS1-based serology and sensitivity to antiviral drugs. PLoS Negl Trop Dis 2020; 14:e0008156. [PMID: 32226028 PMCID: PMC7145266 DOI: 10.1371/journal.pntd.0008156] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 04/09/2020] [Accepted: 02/19/2020] [Indexed: 01/25/2023] Open
Abstract
Surveillance of Usutu virus is crucial to prevent future outbreaks both in Europe and in other countries currently naïve to the infection, such as the Americas. This goal remains difficult to achieve, notably because of the lack of large-scale cohort studies and the absence of commercially available diagnostic reagents for USUV. This work started with the first identification of USUV in a blood donor in the Friuli Venezia Giulia (FVG) Region in Northern-Eastern Italy, which is endemic for West Nile virus. Considering that only one IgG ELISA is commercially available, but none for IgM, a novel NS1 antigen based IgG/M ELISA has been developed. This assay tested successfully for the detection of Usutu virus in blood donors with the identification of a second case of transmission and high levels of exposure. Furthermore, two pan-flavivirus antiviral drugs, that we previously characterized to be inhibitors of other flavivirus infectivity, were successfully tested for inhibition of Usutu virus with inhibitory concentrations in the low micromolar range. To conclude, this work identifies North-Eastern Italy as endemic for Usutu virus with implications for the screening of transfusion blood. A novel NS1-based ELISA test has been implemented for the detection of IgM/G that will be of importance as a tool for the diagnosis and surveillance of Usutu virus infection. Finally, Usutu virus is shown to be sensitive to a class of promising pan-flavivirus drugs. Tropical viruses transmitted by ticks or mosquitoes are becoming a health threat in areas of the world that were previously naïve to these infections. Usutu virus is a mosquito-borne virus that is circulating in Europe causing massive outbreaks in birds. Transmission to humans is documented, with some reports of severe neurological disease. However, the real size of transmission to humans suffers from lack of data due to insufficient surveillance. The first confirmed case of human USUV infection in an asymptomatic blood donor from North-Eastern Italy is hereby demonstrated by molecular assays and virus isolation. Specific Usutu virus serology has also been developed taking advantage of the NS1 viral antigen, which is tested on a number of blood donors demonstrating a high level of Usutu positivity. These findings confirm the human transmission in the region and offer a novel tool for specific Usutu virus surveillance. Finally, two drugs that were previously shown to have a wide spectrum of activity towards members of this family of viruses are shown to inhibit also Usutu virus, opening the way to a novel class antivirals.
Collapse
Affiliation(s)
- Ilaria Caracciolo
- Regional Reference Centre for Arbovirus Infections, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Erick Mora-Cardenas
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste, Italy
| | - Chiara Aloise
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste, Italy
| | - Tea Carletti
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste, Italy
| | - Ludovica Segat
- Regional Reference Centre for Arbovirus Infections, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Azienda Sanitaria Universitaria Integrata di Trieste, UCO Igiene e Sanità Pubblica, Trieste, Italy
| | - Maria Sole Burali
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Perugia, Italy
| | - Alexsia Chiarvesio
- Centro Unico Regionale Produzione Emocomponenti C.U.R.P.E. P.O. Palmanova A.A.S.2 Bassa Friulana Isontina, Palmanova, Italy
| | - Vivianna Totis
- Centro Unico Regionale Produzione Emocomponenti C.U.R.P.E. P.O. Palmanova A.A.S.2 Bassa Friulana Isontina, Palmanova, Italy
| | - Tatjana Avšič–Županc
- Laboratory of Diagnostics of Zoonoses and WHO Centre, Institute of Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| | | | - Giuseppe Manfroni
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Perugia, Italy
| | - Pierlanfranco D’Agaro
- Regional Reference Centre for Arbovirus Infections, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Azienda Sanitaria Universitaria Integrata di Trieste, UCO Igiene e Sanità Pubblica, Trieste, Italy
- * E-mail: (PD); (AM)
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste, Italy
- * E-mail: (PD); (AM)
| |
Collapse
|
7
|
A need to raise the bar - A systematic review of temporal trends in diagnostics for Japanese encephalitis virus infection, and perspectives for future research. Int J Infect Dis 2020; 95:444-456. [PMID: 32205287 PMCID: PMC7294235 DOI: 10.1016/j.ijid.2020.03.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/09/2020] [Accepted: 03/15/2020] [Indexed: 12/14/2022] Open
Abstract
Japanese encephalitis virus (JEV) remains a leading cause of neurological infection in Asia. A systematic review identified 20,212 published human cases of laboratory-confirmed JEV infections from 205 studies. 15,167 (75%) of cases were confirmed with the lowest confidence diagnostic test, i.e., level 3 or 4, or level 4. Only 109 (53%) of the studies reported contemporaneous testing for dengue-specific antibodies. A fundamental pre-requisite for the control of JE is lacking — that of a simple and specific diagnostic procedure that can be adapted for point-of-care tests and readily used throughout JE endemic regions of the world.
Objective Japanese encephalitis virus infection (JE) remains a leading cause of neurological disease in Asia, mainly involving individuals living in remote areas with limited access to treatment centers and diagnostic facilities. Laboratory confirmation is fundamental for the justification and implementation of vaccination programs. We reviewed the literature on historical developments and current diagnostic capability worldwide, to identify knowledge gaps and instill urgency to address them. Methods Searches were performed in Web of Science and PubMed using the term 'Japanese encephalitis' up to 13th October 2019. Studies reporting laboratory-confirmed symptomatic JE cases in humans were included, and data on details of diagnostic tests were extracted. A JE case was classified according to confirmatory levels (Fischer et al., 2008; Campbell et al., 2011; Pearce et al., 2018; Heffelfinger et al., 2017), where level 1 represented the highest level of confidence. Findings 20,212 published JE cases were identified from 205 studies. 15,167 (75%) of these positive cases were confirmed with the lowest-confidence diagnostic tests (level 3 or 4, or level 4). Only 109 (53%) of the studies reported contemporaneous testing for dengue-specific antibodies. Conclusion A fundamental pre-requisite for the control of JEV is lacking — that of a simple and specific diagnostic procedure that can be adapted for point-of-care tests and readily used throughout JE-endemic regions of the world.
Collapse
|
8
|
Barsosio HC, Gitonga JN, Karanja HK, Nyamwaya DK, Omuoyo DO, Kamau E, Hamaluba MM, Nyiro JU, Kitsao BS, Nyaguara A, Mwakio S, Newton CR, Sang R, Wright D, Sanders EJ, Seale AC, Agoti CN, Berkley JA, Bejon P, Warimwe GM. Congenital microcephaly unrelated to flavivirus exposure in coastal Kenya. Wellcome Open Res 2020; 4:179. [PMID: 32175480 PMCID: PMC7059837 DOI: 10.12688/wellcomeopenres.15568.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2019] [Indexed: 11/20/2022] Open
Abstract
Background: Zika virus (ZIKV) was first discovered in East Africa in 1947. ZIKV has caused microcephaly in the Americas, but it is not known whether ZIKV is a cause of microcephaly in East Africa. Methods: We used surveillance data from 11,061 live births at Kilifi County Hospital in coastal Kenya between January 2012 and October 2016 to identify microcephaly cases and conducted a nested case-control study to determine risk factors for microcephaly. Gestational age at birth was estimated based on antenatal ultrasound scanning ('Scanned cohort') or last menstrual period ('LMP cohort', including births ≥37 weeks' gestation only). Controls were newborns with head circumference Z scores between >-2 and ≤2 SD that were compared to microcephaly cases in relation to ZIKV exposure and other maternal and newborn factors. Results: Of the 11,061 newborns, 214 (1.9%, 95%CI 1.69, 2.21) had microcephaly. Microcephaly prevalence was 1.0% (95%CI 0.64, 1.70, n=1529) and 2.1% (95%CI 1.81, 2.38, n=9532) in the scanned and LMP cohorts, respectively. After excluding babies <2500 g (n=1199) in the LMP cohort the prevalence was 1.1% (95%CI 0.93, 1.39). Microcephaly showed an association with being born small for gestational age (p<0.001) but not with ZIKV neutralising antibodies (p=0.6) or anti-ZIKV NS1 IgM response (p=0.9). No samples had a ZIKV neutralising antibody titre that was at least fourfold higher than the corresponding dengue virus (DENV) titre. No ZIKV or other flavivirus RNA was detected in cord blood from cases or controls. Conclusions: Microcephaly was prevalent in coastal Kenya, but does not appear to be related to ZIKV exposure; the ZIKV response observed in our study population was largely due to cross-reactive responses to DENV or other related flaviviruses. Further research into potential causes and the clinical consequences of microcephaly in this population is urgently needed.
Collapse
Affiliation(s)
- Hellen C Barsosio
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,Liverpool School of Tropical Medicine, Liverpool, UK
| | | | | | | | | | - Everlyn Kamau
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Joyce U Nyiro
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Amek Nyaguara
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Stella Mwakio
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Charles R Newton
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,Department of Psychiatry, University of Oxford, Oxford, UK
| | | | - Daniel Wright
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,The Jenner Institute, University of Oxford, Oxford, UK
| | | | - Anna C Seale
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,London School of Hygiene & Tropical Medicine, London, UK
| | | | - James A Berkley
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,Centre for Tropical Medicine & Global Health, University of Oxford, Oxford, UK
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,Centre for Tropical Medicine & Global Health, University of Oxford, Oxford, UK
| | - George M Warimwe
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,Centre for Tropical Medicine & Global Health, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Wang C, Chen Y, Xu T, Tian X, Zheng J, Liu W, Xia Y, Li Y, Zhu B, Zhou R. A novel method to diagnose the infection of enterovirus A71 in children by detecting IgA from saliva. J Med Virol 2020; 92:1059-1064. [PMID: 31944333 DOI: 10.1002/jmv.25672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/21/2019] [Indexed: 01/19/2023]
Abstract
Enterovirus A71 (EV-A71) is one of the main pathogens causing hand, foot, and mouth disease, and often causes diseases of the central nervous system. Early diagnosis is important to prevent EV-A71 outbreaks. The detection of serum immunoglobulin M (IgM) is widely used for the early diagnosis of EV-A71 in clinics, especially in rural areas. However, this technique requires the extraction of blood from children who have thin blood vessels and who might fear the use of needles. Therefore, difficulties in the detection process are often encountered. This study developed a noninvasive method to detect EV-A71-specific immunoglobulin A (IgA) in saliva for the diagnosis of EV-A71 infection. The sensitivity and specificity of IgA detection did not differ significantly compared with IgM detection. IgA antibodies were present in saliva for a relatively shorter period than IgM antibodies were present in serum. The sensitivity of IgA detection was higher than that of IgM detection for secondary EV-A71 infections. These results suggest that the detection of EV-A71-specific IgA in the saliva allows the effective early diagnosis of EV-A71 and may be suitable for detecting EV-A71 infections in children.
Collapse
Affiliation(s)
- Changbing Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The Affiliated First Hospital of Guangzhou Medical University, Guangzhou, China.,Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yi Chen
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tiantian Xu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xingui Tian
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The Affiliated First Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianbin Zheng
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wenkuan Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The Affiliated First Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Xia
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yinghua Li
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bing Zhu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The Affiliated First Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Mora-Cárdenas E, Aloise C, Faoro V, Knap Gašper N, Korva M, Caracciolo I, D'Agaro P, Avšič-Županc T, Marcello A. Comparative specificity and sensitivity of NS1-based serological assays for the detection of flavivirus immune response. PLoS Negl Trop Dis 2020; 14:e0008039. [PMID: 31995566 PMCID: PMC7010293 DOI: 10.1371/journal.pntd.0008039] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/10/2020] [Accepted: 01/08/2020] [Indexed: 11/18/2022] Open
Abstract
Flaviviruses are relevant animal and human pathogens of increasing importance worldwide. The similarities of the initial clinical symptoms and the serological cross-reactivity of viral structural antigens make a laboratory diagnosis of flavivirus infection problematic. The main aim of the present study was the comparative specificity and sensitivity analysis of the non-structural protein NS1 as an antigen to detect flavivirus antibodies in sera from exposed individuals. A strategy for the purification of native recombinant non-structural protein 1 of representative flaviviruses including tick-borne encephalitis, West Nile, Zika and dengue virus was developed. The immunological properties of the purified antigens were analyzed using sera of immunized mice and of infected individuals in comparison with standard commercial assays. Recombinant NS1 protein was confirmed as a valuable option for the detection of flavivirus antibodies with reduced cross-reactivity and high sensitivity offering additional advantages for the detection of vaccine breakthrough cases.
Collapse
Affiliation(s)
- Erick Mora-Cárdenas
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Chiara Aloise
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Valentina Faoro
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Nataša Knap Gašper
- Laboratory of Diagnostics of Zoonoses and WHO Centre, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miša Korva
- Laboratory of Diagnostics of Zoonoses and WHO Centre, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ilaria Caracciolo
- Regional reference Centre for Arbovirus infections, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Pierlanfranco D'Agaro
- Regional reference Centre for Arbovirus infections, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Tatjana Avšič-Županc
- Laboratory of Diagnostics of Zoonoses and WHO Centre, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|