1
|
Yin B, Mao C, Yu F, Li W, Pan R, Feng W, Li Y. A droplet digital PCR method for the detection of scale drop disease virus in yellowfin seabream ( Acanthopagrus latus). Front Microbiol 2024; 15:1444235. [PMID: 39386365 PMCID: PMC11461249 DOI: 10.3389/fmicb.2024.1444235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
In this study, a ddPCR method for the detection of scale drop disease virus (SDDV) in yellowfin seabream (Acanthopagrus latus) was established based on Real-time fluorescence quantitative PCR detection methods and principles. The reaction conditions were optimized, and the sensitivity, specificity, accuracy, and reproducibility were assessed. The results showed that threshold line position was determined to be 1900 by the ddPCR method; the optimum annealing temperature for SDDV detection by the ddPCR method was 60°C; the limit of detection was 1.4-1.7 copies/μL; the results of specific detection of other common viruses, except for SDDV specific amplification, were all negative; and the relative standard deviation (RSD) for the reproducibility validation was 0.77%. The samples of yellowfin seabream (Acanthopagrus latus) liver, spleen, kidney, heart, intestine, brain, blood, muscle, skin and ascites with three replicates, respectively, were tested using the ddPCR method, and the results were consistent with clinical findings. The ddPCR method established in this study has the advantages of high sensitivity, high specificity, good reproducibility and simple steps for the quantitative detection of SDDV, which could be used for the nucleic acid detection of clinical SDDV samples, and provided a new quantitative method for the diagnosis of yellowfin seabream SDDV in the early stage of pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yong Li
- Zhuhai Modern Agriculture Development Center, Zhuhai, China
| |
Collapse
|
2
|
Chokmangmeepisarn P, Azmai MNA, Domingos JA, van Aerle R, Bass D, Prukbenjakul P, Senapin S, Rodkhum C. Genome Characterization and Phylogenetic Analysis of Scale Drop Disease Virus Isolated from Asian Seabass ( Lates calcarifer). Animals (Basel) 2024; 14:2097. [PMID: 39061559 PMCID: PMC11274154 DOI: 10.3390/ani14142097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/07/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Scale drop disease virus (SDDV), a double-stranded DNA virus in the family Iridoviridae, has been reported widely in southeast Asian countries as a causative agent of scale drop syndrome (SDS) in Asian seabass. SDS has resulted in high mortality and significant economic losses to the aquaculture industry. This study demonstrated the use of metagenomic methods to investigate bacterial and viral communities present in infected fish tissues and recover a complete genome of the causative agent named SDDV TH7_2019. Characterization of the TH7_2019 genome revealed a genome size of 131 kb with 134 putative ORFs encoding viral proteins potentially associated with host apoptosis manipulation. A comparative genome analysis showed a high degree of amino acid identity across SDDV strains, with variations in number of repeat sequences and mutations within core genes. Phylogenetic analyses indicate a close relationship among SDDV genomes. This research enhances our understanding of the genetic diversity and evolutionary relationship of SDDV, contributing valuable insights for further development of effective control strategies of SDDV.
Collapse
Affiliation(s)
- Putita Chokmangmeepisarn
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mohammad Noor Amal Azmai
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
| | - Jose A. Domingos
- Tropical Futures Institute, James Cook University, Singapore 387370, Singapore;
| | - Ronny van Aerle
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Weymouth, Dorset DT4 8UB, UK; (R.v.A.); (D.B.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Stocker Road, Exeter EX4 4QY, UK
| | - David Bass
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Weymouth, Dorset DT4 8UB, UK; (R.v.A.); (D.B.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Stocker Road, Exeter EX4 4QY, UK
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK
| | - Pochara Prukbenjakul
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Saengchan Senapin
- Tropical Futures Institute, James Cook University, Singapore 387370, Singapore;
- Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Pathum Thani 12120, Thailand
| | - Channarong Rodkhum
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
A panoptic review of techniques for finfish disease diagnosis: The status quo and future perspectives. J Microbiol Methods 2022; 196:106477. [DOI: 10.1016/j.mimet.2022.106477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 12/27/2022]
|
4
|
Sukonta T, Senapin S, Meemetta W, Chaijarasphong T. CRISPR-based platform for rapid, sensitive and field-deployable detection of scale drop disease virus in Asian sea bass (Lates calcarifer). JOURNAL OF FISH DISEASES 2022; 45:107-120. [PMID: 34613623 DOI: 10.1111/jfd.13541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Scale drop disease virus (SDDV) is a major pathogen of Asian sea bass that has emerged in many countries across the Asia Pacific since 1992 and carries the potential to cause drastic economic losses to the aquaculture sector. The lack of an approved vaccine for SDDV necessitates timely prevention as the first line of defence against the disease, but current diagnostic platforms still face challenges that render them incompatible with field applications, particularly in resource-limited settings. Here, we developed a novel detection platform for SDDV based on a CRISPR-Cas12a-based nucleic acid detection technology combined with recombinase polymerase amplification (RPA-Cas12a). Using the viral adenosine triphosphatase (SDDV-ATPase) gene as a target, we achieved the detection limit of 40 copies per reaction and high specificity for SDDV. The coupling with fluorescence and lateral flow readouts enables naked-eye visualization and straightforward data interpretation requiring minimal scientific background. Compared with semi-nested PCR in field sample evaluation, our RPA-Cas12a assay is more sensitive and capable of detecting SDDV in asymptomatic fish. Importantly, the entire workflow can be carried out at a constant temperature of 37°C within an hour from start to finish, thus removing the need for an expensive thermal cycling apparatus and long turnaround times associated with PCR-based methods. Therefore, owing to its high accuracy, rapidity and user-friendliness, the developed RPA-Cas12a platform shows the potential for diagnosis of SDDV at point of need and could be a valuable tool to help protect fish farming communities from large-scale epidemics.
Collapse
Affiliation(s)
- Thanwarat Sukonta
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Saengchan Senapin
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Watcharachai Meemetta
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Thawatchai Chaijarasphong
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Prasitporn T, Senapin S, Vaniksampanna A, Longyant S, Chaivisuthangkura P. Development of cross-priming amplification (CPA) combined with colorimetric and lateral flow dipstick visualization for scale drop disease virus (SDDV) detection. JOURNAL OF FISH DISEASES 2021; 44:1411-1422. [PMID: 34041757 DOI: 10.1111/jfd.13448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Scale drop disease virus (SDDV) is one of the most important pathogens that causes scale drop disease (SDD) in Asian sea bass (Lates calcarifer). The outbreaks of this disease are one of the factors causing substantial losses in Asian sea bass aquaculture. In this study, the uracil-DNA glycosylase (UDG)-supplemented cross-priming amplification (UCPA) combined with a colorimetric detection method using the hydroxynaphthol blue (HNB) and lateral flow dipstick (LFD) for detection of SDDV was developed. The UDG was utilized to prevent carryover contamination, and the CPA reactions can be readily observed by HNB and LFD. The CPA primers and probe were designed to target the major capsid protein (MCP) gene of the SDDV. The optimized UCPA conditions were performed at the temperature of 61°C for 60 min. The UCPA assays demonstrated specificity to SDDV without cross-reaction to other tested viruses including red-spotted grouper nervous necrosis virus (RGNNV), infectious spleen and kidney necrosis virus (ISKNV) and Lates calcarifer herpes virus (LCHV), and other bacterial species commonly found in aquatic animals. The sensitivity of the UCPA-HNB and UCPA-LFD was 100 viral copies/µl and 10 pg of extracted total DNA, which was 10-fold more sensitive than that of conventional PCR. The UCPA-HNB and UCPA-LFD assays could be used to detect the SDDV infection in all 25 confirmed SDDV-infected fish samples. Therefore, the UCPA coupled with HNB and LFD was rapid, simple and effective and might be applied for diagnosis of SDDV infection.
Collapse
Affiliation(s)
- Terawut Prasitporn
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
- Center of Excellence in Animal, Plant and Parasite Biotechnology, Srinakharinwirot University, Bangkok, Thailand
| | - Saengchan Senapin
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | | | - Siwaporn Longyant
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
- Center of Excellence in Animal, Plant and Parasite Biotechnology, Srinakharinwirot University, Bangkok, Thailand
| | - Parin Chaivisuthangkura
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
- Center of Excellence in Animal, Plant and Parasite Biotechnology, Srinakharinwirot University, Bangkok, Thailand
| |
Collapse
|
6
|
Charoenwai O, Senapin S, Dong HT, Sonthi M. Detection of scale drop disease virus from non-destructive samples and ectoparasites of Asian sea bass, Lates calcarifer. JOURNAL OF FISH DISEASES 2021; 44:461-467. [PMID: 33118189 DOI: 10.1111/jfd.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Non-destructive sampling methods offer practical advantages to detection and monitoring of viral pathogens in economically important farmed fish and broodstock. Here, we investigated whether blood, mucus and fin can be used as non-lethal sample sources for detection of scale drop disease virus (SDDV) in farmed Asian sea bass, Lates calcarifer. Detection of SDDV was performed in parallel from three non-destructive and seven destructive sample types, collected from both clinically sick fish and subclinical fish obtained from an affected farm. The results showed that SDDV was detectable in all 10 sample types with the percentage ranging from 20% to 100%. Blood was the best non-destructive sample source exhibited by the fact that it yielded 100% SDDV-positive tests from both sick (n = 12, 95% CI: 69.9-99.2) and clinically healthy fish (n = 4, 95% CI: 39.6%-97.4%) and is considered a "sterile" sample. This study also revealed concurrent infection of SDDV and two ectoparasites Lernanthropus sp. and Diplectanum sp., in all affected fish (n = 8, 95% CI: 46.7-99.3) during the disease outbreak. These ectoparasites also tested positive for SDDV by PCR, indicating that they were potential sample sources for PCR-based detection of SDDV and possibly other viruses infecting Asian sea bass.
Collapse
Affiliation(s)
- Onanong Charoenwai
- Faculty of Marine Technology, Burapha University Chanthaburi Campus, Chanthaburi, Thailand
- Aquatic Animal Disease Diagnostics and Immunology Research Unit, Burapha University Chanthaburi Campus, Chanthaburi, Thailand
| | - Saengchan Senapin
- Fish Health Platform, Faculty of Science, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Ha Thanh Dong
- Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, Thailand
| | - Molruedee Sonthi
- Faculty of Marine Technology, Burapha University Chanthaburi Campus, Chanthaburi, Thailand
- Aquatic Animal Disease Diagnostics and Immunology Research Unit, Burapha University Chanthaburi Campus, Chanthaburi, Thailand
| |
Collapse
|
7
|
Kayansamruaj P, Soontara C, Dong HT, Phiwsaiya K, Senapin S. Draft genome sequence of scale drop disease virus (SDDV) retrieved from metagenomic investigation of infected barramundi, Lates calcarifer (Bloch, 1790). JOURNAL OF FISH DISEASES 2020; 43:1287-1298. [PMID: 32829517 DOI: 10.1111/jfd.13240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Scale drop disease virus (SDDV) is a novel viral pathogen considered to be distributed in farmed barramundi (Lates calcarifer) in South-East Asia. Despite the severity of the disease, only limited genomic information related to SDDV is available. In this study, samples of SDDV-infected fish collected in 2019 were used. The microbiome of brain tissue was investigated using Illumina HiSeq DNA sequencing. Taxonomic analysis showed that SDDV was the main pathogen contained in the affected barramundi. De novo metagenome assembly recovered the SDDV genome, named isolate TH2019, 131 kb in length, and comprised of 135 ORFs. Comparison between this genome and the Singaporean SDDV reference genome revealed that the nucleotide identity within the aligned region was 99.97%. Missense, frameshift, insertion and deletion mutations were identified in 26 ORFs. Deletion of four deduced amino acid sequence in ORF_030L, identical to the SDDV isolate previously identified in Thailand, would be a potential biomarker for future strain classification. Interestingly, the genome of SDDV TH2019 harboured a unique 7,695-bp-long genomic region containing six hypothetical protein-encoded genes. Collectively, this study demonstrated that the SDDV genome can be sequenced directly, although with limited coverage depth, using metagenomic analysis of barramundi sample with severe infection.
Collapse
Affiliation(s)
- Pattanapon Kayansamruaj
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Chayanit Soontara
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Ha T Dong
- Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, Thailand
- Faculty of Science, Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Bangkok, Thailand
| | - Kornsunee Phiwsaiya
- Faculty of Science, Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Pathum Thani, Thailand
| | - Saengchan Senapin
- Faculty of Science, Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Pathum Thani, Thailand
| |
Collapse
|
8
|
Kerddee P, Dong HT, Chokmangmeepisarn P, Rodkhum C, Srisapoome P, Areechon N, Del-Pozo J, Kayansamruaj P. Simultaneous detection of scale drop disease virus and Flavobacterium columnare from diseased freshwater-reared barramundi Lates calcarifer. DISEASES OF AQUATIC ORGANISMS 2020; 140:119-128. [PMID: 32759470 DOI: 10.3354/dao03500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Freshwater farming of barramundi Lates calcarifer in Thailand is a growing sector in aquaculture, but mortalities due to infectious diseases are still a major threat to this industry. In 2018, an episode of severe mortality in juvenile barramundi was noted in a freshwater earth pond site. Fish presented with severe gill necrosis, as well as severe cutaneous hemorrhages, scale loss, and discoloration at the base of dorsal fin (saddleback lesions). Histopathology revealed extensive necrosis of skeletal muscle and gill filaments, as well as basophilic inclusion bodies and megalocytosis in muscle, gill, liver, and kidney. Scale drop disease virus (SDDV) infection was subsequently confirmed by virus-specific semi-nested PCR. Further, DNA sequences of the viral major capsid protein (MCP) and ATPase genes had a respective homology of 99.85 and 99.92% with sequences of SDDV infecting barramundi in saltwater culture. Gill necrosis and saddleback lesions are not typical lesions associated with scale drop syndrome. Their presence was explained by Flavobacterium columnare isolation from the gill, followed by positive F. columnare-specific PCR. To our knowledge, this is the first report of SDDV-associated mortality in freshwater-farmed barramundi. Furthermore, this mortality presented as a concurrent infection with SDDV and F. columnare, with typical lesions of both infections.
Collapse
Affiliation(s)
- Pattarawit Kerddee
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Meemetta W, Domingos JA, Dong HT, Senapin S. Development of a SYBR Green quantitative PCR assay for detection of Lates calcarifer herpesvirus (LCHV) in farmed barramundi. J Virol Methods 2020; 285:113920. [PMID: 32579895 DOI: 10.1016/j.jviromet.2020.113920] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/13/2020] [Accepted: 06/14/2020] [Indexed: 01/02/2023]
Abstract
Lates calcarifer herpes virus (LCHV) is a novel virus of farmed barramundi in Southeast Asia. However, a rapid detection method is yet to be available for LCHV. This study, therefore, aimed to develop a rapid quantitative PCR (qPCR) detection method for LCHV and made it timely available to public for disease diagnostics and surveillance in barramundi farming countries. A newly designed primer set targeting a 93-bp fragment of the LCHV putative major envelope protein encoding gene (MEP) was used for developing and optimizing a SYBR Green based qPCR assay. The established protocol could detect as low as 10 viral copies per μl of DNA template in a reaction containing spiked host DNA. No cross-amplification with genomic DNA extracted from host as well as common aquatic pathogens (12 bacteria and 4 viruses) were observed. Validation test of the method with clinical samples revealed that the virus was detected in multiple organs of the clinically sick fish but not in the healthy fish. We thus recommend that barramundi farming countries should promptly initiate active surveillance for LCHV in order to understand their circulation for preventing possibly negative impact to the industry.
Collapse
Affiliation(s)
- Watcharachai Meemetta
- Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Jose A Domingos
- Tropical Futures Institute, James Cook University, 387380, Singapore
| | - Ha Thanh Dong
- Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, 10300, Thailand.
| | - Saengchan Senapin
- Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| |
Collapse
|
10
|
Sriisan S, Boonchird C, Thitamadee S, Sonthi M, Thanh Dong H, Senapin S. A sensitive and specific SYBR Green-based qPCR assay for detecting scale drop disease virus (SDDV) in Asian sea bass. DISEASES OF AQUATIC ORGANISMS 2020; 139:131-137. [PMID: 32406868 DOI: 10.3354/dao03484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Scale drop disease virus (SDDV) is a megalocytivirus known to cause disease in Asian sea bass in Southeast Asia. To support SDDV diagnosis and surveillance, we report on a sensitive and specific SYBR Green qPCR assay. The qPCR primers were designed to target a 135 bp fragment of the SDDV ATPase gene. The optimized SDDV qPCR assay reliably detected 2 copies of a plasmid dsDNA control and did not cross-amplify DNA to any of 12 viral or bacterial pathogens commonly found in aquatic animals. When assessed with 86 field samples, the assay detected SDDV in DNA extracted from each of 34 scale drop disease-affected fish collected from 5 affected farms. The qPCR also detected SDDV in DNA from 30 of 52 overtly healthy fish collected from 9 farms where SDDV had not been detected previously, using a semi-nested conventional PCR. The higher sensitivity of our SDDV qPCR assay can thus be useful in detecting fish with subclinical/chronic infections. However, the qPCR showed that SDDV DNA loads varied from 8.0 × 102 to 6.8 × 104 viral DNA copies per 200 ng DNA template among the 8 organ tissue types sampled from 3 diseased fish. In circumstances requiring SDDV to be detected unequivocally in subclinical carriers with lower-level infection, qPCR testing of more than one type of tissue is advisable.
Collapse
Affiliation(s)
- Sukhontip Sriisan
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | | | | | | | | |
Collapse
|