1
|
Li J, Cui H, Zhang Y, Wang X, Liu H, Mu Y, Wang H, Chen X, Dong T, Zhang C, Chen L. A Rapid Detection Method for H3 Avian Influenza Viruses Based on RT-RAA. Animals (Basel) 2024; 14:2601. [PMID: 39272386 PMCID: PMC11393923 DOI: 10.3390/ani14172601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
The continued evolution of H3 subtype avian influenza virus (AIV)-which crosses the interspecific barrier to infect humans-and the potential risk of genetic recombination with other subtypes pose serious threats to the poultry industry and human health. Therefore, rapid and accurate detection of H3 virus is highly important for preventing its spread. In this study, a method based on real-time reverse transcription recombinase-aided isothermal amplification (RT-RAA) was successfully developed for the rapid detection of H3 AIV. Specific primers and probes were designed to target the hemagglutinin (HA) gene of H3 AIV, ensuring highly specific detection of H3 AIV without cross-reactivity with other important avian respiratory viruses. The results showed that the detection limit of the RT-RAA fluorescence reading method was 224 copies/response within the 95% confidence interval, while the detection limit of the RT-RAA visualization method was 1527 copies/response within the same confidence interval. In addition, 68 clinical samples were examined and the results were compared with those of real-time quantitative PCR (RT-qPCR). The results showed that the real-time fluorescence RT-RAA and RT-qPCR results were completely consistent, and the kappa value reached 1, indicating excellent correlation. For visual detection, the sensitivity was 91.43%, the specificity was 100%, and the kappa value was 0.91, which also indicated good correlation. In addition, the amplified products of RT-RAA can be visualized with a portable blue light instrument, which enables rapid detection of H3 AIV even in resource-constrained environments. The H3 AIV RT-RAA rapid detection method established in this study can meet the requirements of basic laboratories and provide a valuable reference for the early diagnosis of H3 AIV.
Collapse
Affiliation(s)
- Jiaqi Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Huan Cui
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Yuxin Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Xuejing Wang
- The Animal Husbandry and Veterinary Institute of Hebei, Baoding, 071001, China
| | - Huage Liu
- The Animal Husbandry and Veterinary Institute of Hebei, Baoding, 071001, China
| | - Yingli Mu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Hongwei Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Xiaolong Chen
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Tongchao Dong
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Cheng Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Ligong Chen
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
2
|
Balea R, Pollak NM, Hobson-Peters J, Macdonald J, McMillan DJ. Development and pre-clinical evaluation of a Zika virus diagnostic for low resource settings. Front Microbiol 2023; 14:1214148. [PMID: 38053551 PMCID: PMC10694267 DOI: 10.3389/fmicb.2023.1214148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction Zika virus (ZIKV) is a re-emerging flavivirus that poses a significant public health threat. ZIKV exhibits a wide array of non-vector borne human transmission routes, such as sexual transmission, transplacental transmission and blood transfusion. Detection and surveillance of ZIKV is considered paramount in prevention of major outbreaks. With the majority of cases reported in low-resource locations, simple, low-cost detection methods are considered highly desirable. Materials and Methods Here we have developed a sensitive and specific ZIKV diagnostic using reverse transcription recombinase-aided amplification (RT-RAA) coupled with lateral flow detection (LFD) targeting a highly conserved region of the ZIKV NS1 gene. Results We show our rapid, isothermal-ZIKV-diagnostic (Iso-ZIKV-Dx) can detect 500 copies of synthetic ZIKV RNA/μL in under 30 min at a constant 39°C. Using simulated urine samples, we observed that Iso-ZIKV-Dx also detects as low as 34.28 RNA copies/reaction of ZIKV (MR766 strain). Specificity testing confirmed that our test does not detect any co-circulating flaviviruses (dengue, West Nile, Japanese encephalitis, Murray Valley encephalitis and yellow fever viruses) or chikungunya virus. Sample processing results show complete inactivation of ZIKV (MR766 strain) in 5 min at room temperature using our novel viral RNA sample preparation reagent. Furthermore, lateral flow strips testing demonstrates positive diagnoses in as little as 5 min in running buffer. Discussion Contrary to conventional RT-qPCR, our Iso-ZIKV-Dx does not require expensive machinery, specialised laboratory settings or extensively trained personnel. Pre-clinical evaluation demonstrates that our test exhibits robust, in-field capabilities without compromising sensitivity or specificity. When compared to the gold-standard RT-qPCR, our Iso-ZIKV-Dx test offers an array of applications that extend beyond diagnostics alone, including potential for surveillance and monitoring of ZIKV vector competency.
Collapse
Affiliation(s)
- Rickyle Balea
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Nina M. Pollak
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Joanne Macdonald
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- BioCifer Pty Ltd., Auchenflower, QLD, Australia
| | - David J. McMillan
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
3
|
Li X, Zhu S, Zhang X, Ren Y, He J, Zhou J, Yin L, Wang G, Zhong T, Wang L, Xiao Y, Zhu C, Yin C, Yu X. Advances in the application of recombinase-aided amplification combined with CRISPR-Cas technology in quick detection of pathogenic microbes. Front Bioeng Biotechnol 2023; 11:1215466. [PMID: 37720320 PMCID: PMC10502170 DOI: 10.3389/fbioe.2023.1215466] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
The rapid diagnosis of pathogenic infections plays a vital role in disease prevention, control, and public health safety. Recombinase-aided amplification (RAA) is an innovative isothermal nucleic acid amplification technology capable of fast DNA or RNA amplification at low temperatures. RAA offers advantages such as simplicity, speed, precision, energy efficiency, and convenient operation. This technology relies on four essential components: recombinase, single-stranded DNA-binding protein (SSB), DNA polymerase, and deoxyribonucleoside triphosphates, which collectively replace the laborious thermal cycling process of traditional polymerase chain reaction (PCR). In recent years, the CRISPR-Cas (clustered regularly interspaced short palindromic repeats-associated proteins) system, a groundbreaking genome engineering tool, has garnered widespread attention across biotechnology, agriculture, and medicine. Increasingly, researchers have integrated the recombinase polymerase amplification system (or RAA system) with CRISPR technology, enabling more convenient and intuitive determination of detection results. This integration has significantly expanded the application of RAA in pathogen detection. The step-by-step operation of these two systems has been successfully employed for molecular diagnosis of pathogenic microbes, while the single-tube one-step method holds promise for efficient pathogen detection. This paper provides a comprehensive review of RAA combined with CRISPR-Cas and its applications in pathogen detection, aiming to serve as a valuable reference for further research in related fields.
Collapse
Affiliation(s)
- Xiaoping Li
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau, 999078, China
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang Province, 310015, China
| | - Shuying Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang Province, 310015, China
| | - Xinling Zhang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang Province, 310015, China
| | - Yanli Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Jing He
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang Province, 310015, China
| | - Jiawei Zhou
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang Province, 310015, China
| | - Liliang Yin
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang Province, 310015, China
| | - Gang Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang Province, 310015, China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau, 999078, China
| | - Ling Wang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau, 999078, China
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau, 999078, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Contaminants Exposure and Health, Guangzhou, Guangdong Province, 510006, China
| | - Chunying Zhu
- Clinical Psychology Department, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, 310005, China
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau, 999078, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau, 999078, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Contaminants Exposure and Health, Guangzhou, Guangdong Province, 510006, China
| |
Collapse
|
4
|
Han Y, Li F, Yang L, Guo X, Dong X, Niu M, Jiang Y, Li L, Li H, Sun Y. Imunocapture Magnetic Beads Enhanced and Ultrasensitive CRISPR-Cas13a-Assisted Electrochemical Biosensor for Rapid Detection of SARS-CoV-2. BIOSENSORS 2023; 13:597. [PMID: 37366962 DOI: 10.3390/bios13060597] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/22/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023]
Abstract
The rapid and ongoing spread of the coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emphasizes the urgent need for an easy and sensitive virus detection method. Here, we describe an immunocapture magnetic bead-enhanced electrochemical biosensor for ultrasensitive SARS-CoV-2 detection based on clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins, collectively known as CRISPR-Cas13a technology. At the core of the detection process, low-cast and immobilization-free commercial screen-printed carbon electrodes are used to measure the electrochemical signal, while streptavidin-coated immunocapture magnetic beads are used to reduce the background noise signal and enhance detection ability by separating the excessive report RNA, and a combination of isothermal amplification methods in the CRISPR-Cas13a system is used for nucleic acid detection. The results showed that the sensitivity of the biosensor increased by two orders of magnitude when the magnetic beads were used. The proposed biosensor required approximately 1 h of overall processing time and demonstrated an ultrasensitive ability to detect SARS-CoV-2, which could be as low as 1.66 aM. Furthermore, owing to the programmability of the CRISPR-Cas13a system, the biosensor can be flexibly applied to other viruses, providing a new approach for powerful clinical diagnostics.
Collapse
Affiliation(s)
- Yao Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Fan Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Lan Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xudong Guo
- Chinese PLA Center for Disease Control and Prevention, Beijing 102206, China
| | - Xue Dong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Mengwei Niu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yaxuan Jiang
- College of Public Health, Zhengzhou University, Zhengzhou City 450001, China
| | - Lin Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yansong Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| |
Collapse
|
5
|
Recent advances in diagnostic approaches for orf virus. Appl Microbiol Biotechnol 2023; 107:1515-1523. [PMID: 36723701 DOI: 10.1007/s00253-023-12412-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/02/2023]
Abstract
Orf virus (ORFV), the prototype species of the Parapoxvirus genus, is an important zoonotic virus, causing great economic losses in livestock production. At present, there are no effective drugs for orf treatment. Therefore, it is crucial to develop accurate and rapid diagnostic approaches for ORFV. Over decades, various diagnostic methods have been established, including conventional methods such as virus isolation and electron microscopy; serological methods such as virus neutralization test (VNT), immunohistochemistry (IHC) assay, immunofluorescence assay (IFA), and enzyme-linked immunosorbent assay (ELISA); and molecular methods such as polymerase chain reaction (PCR), real-time PCR, loop-mediated isothermal amplification (LAMP), recombinase polymerase amplification (RPA), and recombinase-aided amplification (RAA) assay. This review provides an overview of currently available diagnostic approaches for ORFV and discusses their advantages and limitations and future perspectives, which would be significantly helpful for ORFV early diagnosis and surveillance to prevent outbreak of orf. KEY POINTS: • Orf virus emerged and reemerged in past years • Rapid and efficient diagnostic approaches are needed and critical for ORFV detection • Novel and sensitive diagnostic methods are required for ORFV detection.
Collapse
|
6
|
Cui H, Guan J, Lu H, Liu J, Tu F, Zhang C, Su K, Guo Z, Zhao K. Rapid Onsite Visual Detection of Orf Virus Using a Recombinase-Aided Amplification Assay. Life (Basel) 2023; 13:life13020494. [PMID: 36836851 PMCID: PMC9968157 DOI: 10.3390/life13020494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Orf is an important zoonotic disease caused by the Orf virus (ORFV) which can cause contagious pustular dermatitis in goats and sheep. Orf is widespread in most sheep-raising countries in the world, causing huge economic losses. Although diagnostic methods for ORFV infection already exist, it is still necessary to develop a time-saving, labor-saving, specific, low-cost and visual diagnostic method for rapid detection of ORFV in the field and application in grassroots laboratories. This study establishes a DNA extraction-free, real-time, visual recombinase-aided amplification (RAA) method for the rapid detection of ORFV. This method is specific to ORFV and does not cross-react with other common DNA viruses. The detection limits of the real-time RAA and visual judgment of the RAA assay at 95% probability were 13 and 21 copies per reaction for ORFV, respectively. Compared with qPCR, the sensitivity and specificity of the real-time RAA assay were 100%, and those of the visual RAA assay were 92.31% and 100.0%, respectively. The DNA extraction-free visual detection method of RAA established in this study can meet the needs of rapid onsite detection and grassroots laboratories and has important reference value and significance for the early diagnosis of diseased animals.
Collapse
Affiliation(s)
- Huan Cui
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jiyu Guan
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Huijun Lu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Jun Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Fei Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Cheng Zhang
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding 071000, China
| | - Kai Su
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding 071000, China
| | - Zhendong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- Correspondence: (Z.G.); (K.Z.)
| | - Kui Zhao
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Correspondence: (Z.G.); (K.Z.)
| |
Collapse
|
7
|
Feng X, Zhou D, Gan B, Xie G, Xu H. A Combination of Novel Nucleic Acid Cross-Linking Dye and Recombinase-Aided Amplification for the Rapid Detection of Viable Salmonella in Milk. Foods 2022; 11:foods11152375. [PMID: 35954141 PMCID: PMC9368416 DOI: 10.3390/foods11152375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
Salmonella, as an important foodborne pathogen, can cause various diseases, such as severe enteritis. In recent years, various types of nucleicacid-intercalating dyes have been utilized to detect viable Salmonella. However, in principle, the performance of existing nucleic acid dyes is limited because they depend on the integrity of cell membrane. Herein, based on the metabolic activity of bacteria, a novel DNA dye called thiazole orange monoazide (TOMA) was introduced to block the DNA from dead bacteria. Recombinase-aided amplification (RAA) was then performed to detect viable Salmonella in samples. In this study, the permeability of TOMA to the cell membrane of Salmonella was evaluated via confocal laser scanning microscopy and fluorescence emission spectrometry. The limit of detection (LOD) of the TOMA–RAA method was 2.0 × 104 CFU/mL in pure culture. The feasibility of the TOMA–RAA method in detecting Salmonella was assessed in spiked milk. The LOD for Salmonella was 3.5 × 102 CFU/mL after 3 h of enrichment and 3.5 × 100 CFU/mL after 5 h of enrichment. The proposed TOMA–RAA assay has great potential to be applied to accurately detect and monitor foodborne pathogens in milk and its byproducts.
Collapse
Affiliation(s)
- Xiaoyan Feng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Donggen Zhou
- Ningbo International Travel Healthcare Center (Ningbo Customs Port Outpatient Department), Ningbo 315010, China
| | - Bei Gan
- Institute for Testing of Industrial Products of Jiangxi General Institute of Testing and Certification, Nanchang 330047, China
| | - Guoyang Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Correspondence: or ; Tel.: +86-791-8830-4447 (ext. 9520); Fax: +86-791-8830-4400
| |
Collapse
|
8
|
Jiao J, Qi Y, He P, Wan W, OuYang X, Yu Y, Wen B, Xiong X. Development of a Lateral Flow Strip-Based Recombinase-Aided Amplification for Active Chlamydia psittaci Infection. Front Microbiol 2022; 13:928025. [PMID: 35770169 PMCID: PMC9234530 DOI: 10.3389/fmicb.2022.928025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Chlamydia psittaci is the causative agent of psittacosis, a worldwide zoonotic disease. A rapid, specific, and sensitive diagnostic assay would be benefit for C. psittaci infection control. In this study, an assay combining recombinase-aided amplification and a lateral flow strip (RAA-LF) for the detection of active C. psittaci infection was developed. The RAA-LF assay targeted the CPSIT_RS02830 gene of C. psittaci and could be accomplished in 15 min at a single temperature (39°C). The analytical sensitivity of the assay was as low as 1 × 100 copies/μl and no cross-reaction with some other intracellular pathogens was observed. Moreover, all feces samples from mice infected with C. psittaci at day-1 post-infection were positive in the RAA-LF assay. In conclusion, the RAA-LF assay provides a convenient, rapid, specific and sensitive method for detection of active C. psittaci infection and it is also suitable for C. psittaci detection in field.
Collapse
Affiliation(s)
- Jun Jiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yong Qi
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, China
| | - Peisheng He
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Weiqiang Wan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xuan OuYang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yonghui Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bohai Wen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaolu Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- *Correspondence: Xiaolu Xiong,
| |
Collapse
|
9
|
Feng ZS, Li JY, Zhang JY, Li FY, Guan HX, Zhang RQ, Liu H, Guo Q, Shen XX, Kan B, Ma XJ. Development and evaluation of a sensitive recombinase aided amplification assay for rapid detection of Vibrio parahaemolyticus. J Microbiol Methods 2022; 193:106404. [PMID: 34990645 DOI: 10.1016/j.mimet.2021.106404] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/27/2022]
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is a widely distributed pathogen in the coastal areas, which causes food poisoning and leads to gastroenteritis and sepsis. Therefore, developing a simple, sensitive, and rapid detection method for V. parahaemolyticus is a major concern globally. This study established a sensitive and rapid technique based on recombinase aided amplification (RAA) to detect V. parahaemolyticus. The RAA reaction was carried out successfully at 39 °C within 30 min. The sensitivity of the RAA assay was 101 copies/μL using the recombinant plasmid and 10-3 ng/μL using the V. parahaemolyticus strain. In addition, RAA directly detected 7 × 103 CFU/mL of simulated fecal samples and 0.1 CFU/mL after enrichment for 4 h. The sensitivity and specificity of the RAA assay using fecal and fish samples were 100% similar to that of the real-time PCR. We conclude that the RAA assay is an ideal screening method for detecting V. parahaemolyticus due to its rapidity, high accuracy, and simplicity in operation.
Collapse
Affiliation(s)
- Zhi-Shan Feng
- Hebei Medical University, Shijiazhuang 050031, Hebei, China; Hebei General Hospital, Shijiazhuang 050070, Hebei, China
| | - Jing-Yi Li
- Hebei Medical University, Shijiazhuang 050031, Hebei, China; Hebei General Hospital, Shijiazhuang 050070, Hebei, China; NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jing-Yun Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute forCommunicable DiseaseControl and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Feng-Yu Li
- Hebei Medical University, Shijiazhuang 050031, Hebei, China; Hebei General Hospital, Shijiazhuang 050070, Hebei, China; NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Hong-Xia Guan
- Wuxi Center for Disease Control and Prevention, Wuxi 214023, Jiangsu, China
| | - Rui-Qing Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Hong Liu
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences and Medicine, Shandong University of Technology, Zibo255049, Shandong, China
| | - Qi Guo
- Laboratory of Virology, Beijing Key Laboratory ofEtiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing 100020, China
| | - Xin-Xin Shen
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute forCommunicable DiseaseControl and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Xue-Jun Ma
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
10
|
Qian W, Huang J, Wang T, He X, Xu G, Li Y. Visual detection of human metapneumovirus using CRISPR-Cas12a diagnostics. Virus Res 2021; 305:198568. [PMID: 34555442 DOI: 10.1016/j.virusres.2021.198568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Human metapneumovirus (HmPV) is a common and serious virus that causes respiratory tract infection. This study aimed to develop a detection technique by combining reverse transcription recombinase polymerase amplification (RT-RPA) with CRISPR-Cas12a (RT-RPA-Cas12a) for clinical diagnosis of HmPV. Herein, four primer pairs targeting partial nucleoprotein (N) gene of HmPV were designed and evaluated. Then, the products amplified by RT-RPA were detected using CRISPR-Cas12a combined with fluorescence or lateral flow (LF). RT-RPA-Cas12a-based fluorescence or LF assay can be completed within 35 min or 45 min, and the detection limit was up to 6.97 × 102 copies/mL. And there was no cross reaction with human bocavirus, respiratory syncytial virus, adenovirus and parainfluenza virus. By combining with LF, the detection results were evaluated by naked eyes. Furthermore, 28 clinical samples were applied to examine the performance of RT-RPA-Cas12a system. The detection coincidence rates of RT-RPA-Cas12a-fluorescence and RT-RPA-Cas12a-LF with quantitative RT-PCR were 96.4% and 92.9%, respectively. Together, the new method for detecting HmPV with high sensitivity and specificity based on RT-RPA-Cas12a-fluorescence or LF shows promising potential for clinical diagnosis of HmPV without professional skills or ancillary equipment.
Collapse
Affiliation(s)
- Weidong Qian
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China.
| | - Jie Huang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Ting Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Xiaoxian He
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Guozhang Xu
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, PR China
| | - Yongdong Li
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, PR China.
| |
Collapse
|
11
|
A SYBR Green I-based real-time polymerase chain reaction assay for detection and quantification of canine bufavirus. Mol Cell Probes 2021; 59:101762. [PMID: 34481896 DOI: 10.1016/j.mcp.2021.101762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/21/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022]
Abstract
Canine bufavirus (CBuV) was first discovered in puppies in Italy in 2016, and subsequent studies have reported its possible relationship with acute enteritis. Currently, there is no specific and quantitative detection method for CBuV. This study examined the conserved NS1 gene and used a pair of specific primers to establish a direct SYBR Green I-based real-time quantitative polymerase chain reaction (qPCR) method for the detection and quantification of CBuV. In the sensitivity experiment, the detection limit of SYBR Green I-based real-time qPCR was 4.676 × 101 copies/μL and that of conventional PCR (cPCR) was 4.676 × 103 copies/μL. Furthermore, the qPCR method did not detect other viruses in dogs, indicating good specificity. The intra-assay coefficient of variation was 0.07-0.55% and the inter-assay coefficient of variation was 0.03-0.11%, indicating good repeatability. In clinical sample testing, the detection rate of qPCR was 5.0% (6/120), higher than that of cPCR (2.5%, 3/120). In addition, the samples that tested CBuV-positive in this experiment were all from dogs with acute enteritis. In summary, the SYBR Green I-based qPCR method established in this study has good sensitivity, specificity, and reproducibility for clinical sample detection and can also assist in future research on CBuV.
Collapse
|
12
|
Qin Z, Xue L, Cai W, Gao J, Jiang Y, Yang J, Liang Y, Wang L, Zhang J, Hu Y, Wu Q. Development of a recombinase-aided amplification assay for rapid detection of human norovirus GII.4. BMC Infect Dis 2021; 21:248. [PMID: 33750333 PMCID: PMC7941963 DOI: 10.1186/s12879-021-05942-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/28/2021] [Indexed: 12/28/2022] Open
Abstract
Background Human noroviruses are one of the main causes of foodborne illnesses and represent a serious public health concern. Rapid and sensitive assays for human norovirus detection are undoubtedly necessary for clinical diagnosis, especially in regions without more sophisticated equipment. Method The rapid reverse transcription recombinase-aided amplification (RT-RAA) is a fast, robust and isothermal nucleic acid detection method based on enzyme reaction. This method can complete the sample detection at 39 °C in 30 min. In this study, we successfully established a rapid reverse transcription recombinase-aided amplification (RT-RAA) assay for the detection of human norovirus GII.4 and applied this assay to clinical samples, as well as comparison with commercial reverse transcription real-time fluorescence quantitative PCR (RT-qPCR). Results At 95% probability, the detection sensitivity of RT-RAA was 3.425 log10 genomic copies (LGC)/reaction. Moreover, no cross-reaction was observed with other norovirus genogroups and other common foodborne viruses. Stool samples were examined by RT-RAA and reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). Compared of RT-qPCR, kappa values for human norovirus detection with RT-RAA were 0.894 (p < 0.001), indicating that both assays were in agreement. Conclusion This RT-RAA assay provides a rapid, specific, and sensitive assay for human norovirus detection and is suitable for clinical testing.
Collapse
Affiliation(s)
- Zhiwei Qin
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, No. 100, Xianlie Zhong Road, Guangzhou, Guangdong, 510070, People's Republic of China.,Faculty Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, No. 100, Xianlie Zhong Road, Guangzhou, Guangdong, 510070, People's Republic of China.
| | - Weicheng Cai
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, No. 100, Xianlie Zhong Road, Guangzhou, Guangdong, 510070, People's Republic of China
| | - Junshan Gao
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, No. 100, Xianlie Zhong Road, Guangzhou, Guangdong, 510070, People's Republic of China
| | - Yueting Jiang
- Department of Laboratory Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Jiale Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, No. 100, Xianlie Zhong Road, Guangzhou, Guangdong, 510070, People's Republic of China
| | - Yanhui Liang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, No. 100, Xianlie Zhong Road, Guangzhou, Guangdong, 510070, People's Republic of China
| | - Linping Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, No. 100, Xianlie Zhong Road, Guangzhou, Guangdong, 510070, People's Republic of China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, No. 100, Xianlie Zhong Road, Guangzhou, Guangdong, 510070, People's Republic of China
| | - Yongdan Hu
- Faculty Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, No. 100, Xianlie Zhong Road, Guangzhou, Guangdong, 510070, People's Republic of China.
| |
Collapse
|
13
|
Zheng YZ, Chen JT, Li J, Wu XJ, Wen JZ, Liu XZ, Lin LY, Liang XY, Huang HY, Zha GC, Yang PK, Li LJ, Zhong TY, Liu L, Cheng WJ, Song XN, Lin M. Reverse Transcription Recombinase-Aided Amplification Assay With Lateral Flow Dipstick Assay for Rapid Detection of 2019 Novel Coronavirus. Front Cell Infect Microbiol 2021; 11:613304. [PMID: 33598439 PMCID: PMC7882697 DOI: 10.3389/fcimb.2021.613304] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/08/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The emerging Coronavirus Disease-2019 (COVID-19) has challenged the public health globally. With the increasing requirement of detection for SARS-CoV-2 outside of the laboratory setting, a rapid and precise Point of Care Test (POCT) is urgently needed. METHODS Targeting the nucleocapsid (N) gene of SARS-CoV-2, specific primers, and probes for reverse transcription recombinase-aided amplification coupled with lateral flow dipstick (RT-RAA/LFD) platform were designed. For specificity evaluation, it was tested with human coronaviruses, human influenza A virus, influenza B viruses, respiratory syncytial virus, and hepatitis B virus, respectively. For sensitivity assay, it was estimated by templates of recombinant plasmid and pseudovirus of SARS-CoV-2 RNA. For clinical assessment, 100 clinical samples (13 positive and 87 negatives for SARS-CoV-2) were tested via quantitative reverse transcription PCR (RT-qPCR) and RT-RAA/LFD, respectively. RESULTS The limit of detection was 1 copies/μl in RT-RAA/LFD assay, which could be conducted within 30 min at 39°C, without any cross-reaction with other human coronaviruses and clinical respiratory pathogens. Compared with RT-qPCR, the established POCT assay offered 100% specificity and 100% sensitivity in the detection of clinical samples. CONCLUSION This work provides a convenient POCT tool for rapid screening, diagnosis, and monitoring of suspected patients in SARS-CoV-2 endemic areas.
Collapse
Affiliation(s)
- Yu-Zhong Zheng
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
| | - Jiang-Tao Chen
- Department of Medical Laboratory, Huizhou Central People’s Hospital, Huizhou, China
| | - Jian Li
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Xian-Jing Wu
- Department of Medical Laboratory, Huizhou Central People’s Hospital, Huizhou, China
| | - Jin-Zhou Wen
- Department of Medical Laboratory, Center for Disease Control and Prevention, Chaozhou, China
| | - Xiang-Zhi Liu
- Department of Medical Laboratory, Chaozhou People’s Hospital, Shantou University Medical College, Chaozhou, China
| | - Li-Yun Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
| | - Xue-Yan Liang
- Department of Medical Laboratory, Huizhou Central People’s Hospital, Huizhou, China
- Department of Medical Laboratory, Chaozhou People’s Hospital, Shantou University Medical College, Chaozhou, China
| | - Hui-Ying Huang
- Department of Medical Laboratory, Chaozhou People’s Hospital, Shantou University Medical College, Chaozhou, China
| | - Guang-Cai Zha
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
| | - Pei-Kui Yang
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
| | - Lie-Jun Li
- Department of Research and Development, Chaozhou Hybribio Limited Corporation, Chaozhou, China
| | - Tian-Yu Zhong
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Long Liu
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Wei-Jia Cheng
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Xiao-Nan Song
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Min Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
- *Correspondence: Min Lin,
| |
Collapse
|
14
|
Wang Y, Cui Y, Li Y, Jiang S, Liu H, Wang J, Li Y. Simultaneous detection of duck circovirus and novel goose parvovirus via SYBR green I-based duplex real-time polymerase chain reaction analysis. Mol Cell Probes 2020; 53:101648. [PMID: 32798710 PMCID: PMC7426261 DOI: 10.1016/j.mcp.2020.101648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023]
Abstract
Beak atrophy and dwarfism syndrome (BADS) is commonly caused by co-infection with duck circovirus (DuCV) and novel goose parvovirus (NGPV). Therefore, concurrent detection of both viruses is important for monitoring and limiting BADS, although such a diagnostic test has not been reported. In this study, we developed a duplex, SYBR Green I-based real-time polymerase chain reaction (PCR) assay to enable the simultaneous detection of DuCV and NGPV. The assay readily distinguished between the two viruses, based on their different melting temperatures (Tm), where the Tm for DuCV was 80 °C and that for NGPV was 84.5 °C. Other non-target duck viruses that were tested did not show melting peaks. The detection limit of the duplex assay was 101 copies/μL for both viruses. This method exhibited high repeatability and reproducibility, and both the inter-assay and intra-assay variation coefficients were <1.6%. Thirty-one fecal samples were collected for clinical testing using real-time PCR analysis, and the results were confirmed using sequencing. The rate of co-infection was 6.5%, which was consistent with the sequencing results. This duplex real-time PCR assay offers advantages over other tests, such as rapid, sensitive, specific, and reliable detection of both viruses in a single sample, which enables the quantitative detection of DuCV and NGPV in clinical samples. Using this test may be instrumental in reducing the incidence of BADS and the associated economic losses in the duck and goose industries. SYBR Green based PCR to simultaneously detect duck circovirus and goose parvovirus. The assay had specificity, sensitivity and reproducibility.
Collapse
Affiliation(s)
- Yong Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Yongqiu Cui
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Yeqiu Li
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Shudong Jiang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Hua Liu
- Anhui Provincial Center for Animal Disease Control and Prevention, Hefei, 230000, PR China
| | - Jing Wang
- Animal Husbandry Base Teaching and Research Section, College of Animal Science and Technology, Hebei North University, Zhangjiakou, 075131, PR China.
| | - Yongdong Li
- Municipal Key Laboratory of Virology, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, PR China.
| |
Collapse
|