1
|
Masirika LM, Udahemuka JC, Schuele L, Nieuwenhuijse DF, Ndishimye P, Boter M, Mbiribindi JB, Kacita C, Lang T, Gortázar C, Musabyimana JP, Otani S, Aarestrup FM, Siangoli FB, Oude Munnink BB, Koopmans M. Epidemiological and genomic evolution of the ongoing outbreak of clade Ib mpox virus in the eastern Democratic Republic of the Congo. Nat Med 2025:10.1038/s41591-025-03582-1. [PMID: 39933565 DOI: 10.1038/s41591-025-03582-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/10/2025] [Indexed: 02/13/2025]
Abstract
In September 2023, an ongoing mpox outbreak emerged in South Kivu (Democratic Republic of the Congo) that spread to other regions and countries. Here we describe the epidemiological and genomic evolution of the outbreak between September 2023 and June 2024. Samples were collected from hospitalized patients, along with data on residence and possible exposures. Employee numbers and locations were recorded for bars with sex workers. Where possible, exposures were linked to genomic sequencing data for cluster analysis. In total, 670 cases were admitted to Kamituga General Referral Hospital from 17 health areas. Among the cases, 52.4% were in females and 47.6% in males. The majority (83.4%) were linked to professional sexual interactions. Seven deaths occurred, and three healthcare workers acquired mpox. Eight out of 14 pregnant women had fetal loss. Phylogenetic analysis revealed three clade Ib clusters. Longer branches of a sequence clustering with sequences from Kenya, Uganda, Sweden and Thailand indicate more undocumented spread. Mutations were mostly APOBEC3-type mutations indicative of sustained human-to-human transmission. No clear link between sequence cluster, bar or health area was observed. These data suggest rapid spread mostly through sexual contact within densely populated areas. The spread to neighboring countries highlights the need for extended cross-border collaboration, health education strategies focusing on sex workers, contact tracing, clinical care and surveillance.
Collapse
Affiliation(s)
- Leandre Murhula Masirika
- Centre de Recherche en Sciences Naturelles de Lwiro, Bukavu, Democratic Republic of the Congo.
- SaBio Instituto de Investigación en Recursos Cinegéticos, Universidad de Castilla-La Mancha y CSIC, Ciudad Real, Spain.
- Congo Outbreaks, Research for Development, Bukavu, Democratic Republic of the Congo.
| | - Jean Claude Udahemuka
- Department of Veterinary Medicine, University of Rwanda, Nyagatare, Rwanda
- Stansile Research Organization, Kigali, Rwanda
| | - Leonard Schuele
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - David F Nieuwenhuijse
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Pacifique Ndishimye
- Stansile Research Organization, Kigali, Rwanda
- Research and Innovation Centre, African Institute for Mathematical Sciences, Kigali, Rwanda
| | - Marjan Boter
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Cris Kacita
- Systeme de gestion de l'incident Mpox (SGI MPOX/COUSP/INSP), Kinshasa, Democratic Republic of the Congo
| | - Trudie Lang
- The Global Health Network, University of Oxford, Oxford, UK
| | - Christian Gortázar
- SaBio Instituto de Investigación en Recursos Cinegéticos, Universidad de Castilla-La Mancha y CSIC, Ciudad Real, Spain
| | - Jean Pierre Musabyimana
- Department of Veterinary Medicine, University of Rwanda, Nyagatare, Rwanda
- Stansile Research Organization, Kigali, Rwanda
| | - Saria Otani
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Frank M Aarestrup
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Bas B Oude Munnink
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marion Koopmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
2
|
Gigante CM, Weigand MR, Li Y. Orthopoxvirus Genome Sequencing, Assembly, and Analysis. Methods Mol Biol 2025; 2860:39-63. [PMID: 39621260 DOI: 10.1007/978-1-0716-4160-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Poxviruses have exceptionally large genomes compared to most other viruses, which represent unique challenges to sequencing and assembly due to complex features such as repeat elements and low complexity sequences. The 2022 global mpox outbreak led to an unprecedented level of poxvirus sequencing as public health and research institutions faced with large sample numbers and demand for fast turnaround, merged NGS protocols designed for small RNA viruses with poxvirus expertise. Traditional manual assembly, checking, and editing of genomes was not feasible. Here, we present a protocol for metagenomic sequencing and orthopoxvirus genome assembly directly from DNA extracted from a patient lesion swab with no viral enrichment or host depletion. This sequencing approach is cost effective when using high throughput sequencing instruments and allows for detection of genomic insertions, deletions, and large rearrangement with confidence. We describe usage of two publicly available bioinformatic pipelines for genome assembly, quality control, annotation, and submission to sequence repositories.
Collapse
Affiliation(s)
- Crystal M Gigante
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Michael R Weigand
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Yu Li
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
3
|
Cabanillas B, Murdaca G, Guemari A, Torres MJ, Azkur AK, Aksoy E, Vitte J, Fernández-Santamaria R, Karavelia A, Castagnoli R, Valdelvira R, Orsi A, Ogliastro M, Massaro E, Yücel EÖ, Novak N, Agache I, Akdis M, Akdis CA. Monkeypox 2024 outbreak: Fifty essential questions and answers. Allergy 2024; 79:3285-3309. [PMID: 39495103 DOI: 10.1111/all.16374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/05/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
As the world still vividly recalls the previous monkeypox (mpox) outbreak that impacted over 120 countries worldwide with more than 99,000 cases in 2022, we are now facing a second wave of infections from the monkeypox virus (MPXV), characterized by an exponential increase in cases. The current 2024 outbreak has already recorded more than 20,000 cases in Africa, marking a dramatic escalation compared to previous outbreaks. The predominance of the newly identified clade Ib variant, first detected in the Democratic Republic of the Congo (DRC) and now identified across multiple African nations and beyond, underscores its enhanced transmissibility and potential for international spread, evidenced by cases in Sweden and Thailand. The World Health Organization (WHO) declared on August 14, 2024, the current mpox outbreak a Public Health Emergency of International Concern (PHEIC), calling for heightened global public health measures. The ongoing pattern of unusual, frequent, and extensive outbreaks of mpox with potential global implications poses significant questions. This review addresses, in the format of 50 questions and answers, the 2024 mpox outbreak, detailing its characteristics, epidemiological data, and impact compared to previous outbreaks. It comprehensively explores critical questions related to MPXV virological characteristics, immunological response, clinical manifestations, epidemiology, diagnostics, and available treatments. The review also documents the significant and evolving challenges posed by the current mpox outbreak, highlighting its scale, spread, and public health response.
Collapse
Affiliation(s)
- Beatriz Cabanillas
- Department of Allergy, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Giuseppe Murdaca
- Department of Internal Medicine, University of Genova, Genova, Italy
- Allergology and Clinical Immunology Unit, San Bartolomeo Hospital, Sarzana, Italy
| | - Amir Guemari
- IDESP and PREMEDICAL, University of Montpellier-INSERM, INRIA, Montpellier, France
| | - Maria Jose Torres
- Allergy Unit, Hospital Regional Universitario de Málaga, Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, ARADyAL, Malaga University, Málaga, Spain
| | - Ahmet Kursat Azkur
- Department of Virology, Faculty of Veterinary Medicine, Kirikkale University, Kirikkale, Turkey
| | - Emel Aksoy
- Department of Virology, Faculty of Veterinary Medicine, Kirikkale University, Kirikkale, Turkey
| | - Joana Vitte
- IDESP and PREMEDICAL, University of Montpellier-INSERM, INRIA, Montpellier, France
- University of Reims Champagne-Ardenne, INSERM UMR 1250 and Immunology Laboratory, University Hospital of Reims, Reims, France
| | - Ruben Fernández-Santamaria
- Immunology Department, IIS-Fundacion Jimenez Diaz, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Aspasia Karavelia
- Department of Ear-Nose-Throat Surgery, General Hospital of Nafplio, Nafplio, Greece
| | - Riccardo Castagnoli
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Rafael Valdelvira
- Department of Allergy, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Andrea Orsi
- Department of Health Sciences (DISSAL), University of Genova, Genova, Italy
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genova, Italy
| | - Matilde Ogliastro
- Department of Health Sciences (DISSAL), University of Genova, Genova, Italy
| | - Elvira Massaro
- Department of Health Sciences (DISSAL), University of Genova, Genova, Italy
| | - Esra Özek Yücel
- Division of Pediatrics, Department of Pediatric Allergy and Immunology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Natalija Novak
- Department of Dermatology and Allergy, Venusberg Campus 1, Bonn, Germany
| | - Ioana Agache
- Transylvania University, Brasov, Romania
- Theramed Medical Center, Brasov, Romania
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
4
|
Masirika LM, Udahemuka JC, Schuele L, Ndishimye P, Otani S, Mbiribindi JB, Marekani JM, Mambo LM, Bubala NM, Boter M, Nieuwenhuijse DF, Lang T, Kalalizi EB, Musabyimana JP, Aarestrup FM, Koopmans M, Oude Munnink BB, Siangoli FB. Ongoing mpox outbreak in Kamituga, South Kivu province, associated with monkeypox virus of a novel Clade I sub-lineage, Democratic Republic of the Congo, 2024. Euro Surveill 2024; 29:2400106. [PMID: 38487886 PMCID: PMC10941309 DOI: 10.2807/1560-7917.es.2024.29.11.2400106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/13/2024] [Indexed: 03/17/2024] Open
Abstract
Since the beginning of 2023, the number of people with suspected monkeypox virus (MPXV) infection have sharply increased in the Democratic Republic of the Congo (DRC). We report near-to-complete MPXV genome sequences derived from six cases from the South Kivu province. Phylogenetic analyses reveal that the MPXV affecting the cases belongs to a novel Clade I sub-lineage. The outbreak strain genome lacks the target sequence of the probe and primers of a commonly used Clade I-specific real-time PCR.
Collapse
Affiliation(s)
- Leandre Murhula Masirika
- Centre de Recherche en Sciences Naturelles de Lwiro, DS Bukavu, South Kivu, Bukavu, Democratic Republic of the Congo
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC (Universidad de Castilla-La Mancha & CSIC), Ciudad Real, Spain
| | - Jean Claude Udahemuka
- Department of Veterinary Medicine, University of Rwanda, Nyagatare, Rwanda
- Stansile Research Organization, Kigali, Rwanda
| | - Leonard Schuele
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Pacifique Ndishimye
- Stansile Research Organization, Kigali, Rwanda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Research and Innovation Centre, African Institute for Mathematical Sciences, Kigali, Rwanda
| | - Saria Otani
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Jean M Marekani
- Unit of Animal Production and Health, Nature Conservation and Development, Department of Biology, Faculty of Science, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Léandre Mutimbwa Mambo
- Zone de Santé de Kamituga, Kamituga, South Kivu, Bukavu, Democratic Republic of the Congo
| | | | - Marjan Boter
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - David F Nieuwenhuijse
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Trudie Lang
- The Global Health Network, Oxford University, Oxford, United Kingdom
| | - Ernest Balyahamwabo Kalalizi
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC (Universidad de Castilla-La Mancha & CSIC), Ciudad Real, Spain
| | - Jean Pierre Musabyimana
- Research, innovation and data science division, Rwanda Biomedical Center, Kigali, Rwanda
- Stansile Research Organization, Kigali, Rwanda
| | - Frank M Aarestrup
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marion Koopmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bas B Oude Munnink
- These authors contributed equally
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Freddy Belesi Siangoli
- These authors contributed equally
- Division Provinciale de la Santé, South Kivu, Bukavu, Democratic Republic of the Congo
| |
Collapse
|