1
|
Schmidt TM, Wang ZJ, Keller S, Heinemann A, Acar S, Graessner J, Schoennagel BP, Adam G, Fischer R, Yamamura J. Postmortem 31P magnetic resonance spectroscopy of the skeletal muscle: α-ATP/Pi ratio as a forensic tool? Forensic Sci Int 2014; 242:172-176. [PMID: 25062532 DOI: 10.1016/j.forsciint.2014.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 05/07/2014] [Accepted: 06/13/2014] [Indexed: 01/28/2023]
Abstract
PURPOSE Phosphor magnetic resonance spectroscopy ((31)P MRS) is an established method for metabolic examinations of resting and exercising skeletal muscle. So far, there are few MRS investigations of human corpses. The aim of this study was to investigate the temporal postmortem pattern of phosphor metabolites in the adductor magnus muscle and to check the value of MRS as a forensic tool, especially for the determination of the time of death. MATERIAL AND METHODS Eight corpses, died of natural cause, were examined (5 males, 3 females; age: 73±7 y, weight 65.8±15.9 kg). A control group of 3 subjects (2 males, 1 female, mean age: 51±24 y, range: 24-69 y, mean body weight: 84.0±16.5 kg) was examined at a single time point as well. (31)P MRS was performed on a 1.5 T MRI (TR 700 ms, TE 0.35 ms, averages 256, flip angle 90°). A standard (31)P/(1)H heart/liver coil was employed (receiver coil diameter 12 cm). The (31)P MRS scans were repeated in intervals of 1 h over a period from 4.5 to 24 h postmortem (p.m.). The core temperature was rectally measured throughout the MRI examination. RESULTS The mean core temperature decreased from 36.0°C to 25.7°C. In vivo and ex vivo spectra showed characteristic differences, especially the PCr metabolite was no longer detectable after 10 h p.m. The α-ATP/Pi ratio decreased with time from 0.445 to 0.032 over 24 h p.m. CONCLUSION There is a characteristic postmortem time pattern of the phosphor metabolites. Especially the acquired α-ATP/Pi ratio could be described by a significant exponential time course (r(2)=0.92, p<0.001). (31)P MRS might be added to the postmortem imaging methods.
Collapse
Affiliation(s)
- Tony M Schmidt
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Zhiyue J Wang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sarah Keller
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Axel Heinemann
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Suzan Acar
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Bjoern P Schoennagel
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roland Fischer
- Children's Hospital & Research Center Oakland, Oakland, CA, USA; Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jin Yamamura
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Christensen PM, Nyberg M, Mortensen SP, Nielsen JJ, Secher NH, Damsgaard R, Hellsten Y, Bangsbo J. Leg oxygen uptake in the initial phase of intense exercise is slowed by a marked reduction in oxygen delivery. Am J Physiol Regul Integr Comp Physiol 2013; 305:R313-21. [PMID: 23720134 DOI: 10.1152/ajpregu.00048.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study examined whether a marked reduction in oxygen delivery, unlike findings in moderate-intensity exercise, would slow leg oxygen uptake (Vo2) kinetics during intense exercise (86 ± 3% of incremental test peak power). Seven healthy males (26 ± 1 years, means ± SE) performed one-legged knee-extensor exercise (60 ± 3 W) for 4 min in a control setting (CON) and with arterial infusion of N(G)-monomethyl-l-arginine and indomethacin in the working leg to reduce blood flow by inhibiting formation of nitric oxide and prostanoids (double blockade; DB). In DB leg blood flow (LBF) and oxygen delivery during the first minute of exercise were 25-50% lower (P < 0.01) compared with CON (LBF after 10 s: 1.1 ± 0.2 vs. 2.5 ± 0.3 l/min and 45 s: 2.7 ± 0.2 vs. 3.8 ± 0.4 l/min) and 15% lower (P < 0.05) after 2 min of exercise. Leg Vo2 in DB was attenuated (P < 0.05) during the first 2 min of exercise (10 s: 161 ± 26 vs. 288 ± 34 ml/min and 45 s: 459 ± 48 vs. 566 ± 81 ml/min) despite a higher (P < 0.01) oxygen extraction in DB. Net leg lactate release was the same in DB and CON. The present study shows that a marked reduction in oxygen delivery can limit the rise in Vo2 during the initial part of intense exercise. This is in contrast to previous observations during moderate-intensity exercise using the same DB procedure, which suggests that fast-twitch muscle fibers are more sensitive to a reduction in oxygen delivery than slow-twitch fibers.
Collapse
Affiliation(s)
- Peter M Christensen
- Department of Nutrition, Exercise and Sports, Section of Integrated Physiology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Tecilazich F, Dinh T, Lyons TE, Guest J, Villafuerte RA, Sampanis C, Gnardellis C, Zuo CS, Veves A. Postexercise phosphocreatine recovery, an index of mitochondrial oxidative phosphorylation, is reduced in diabetic patients with lower extremity complications. J Vasc Surg 2013; 57:997-1005. [PMID: 23465172 DOI: 10.1016/j.jvs.2012.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To identify differences in postexercise phosphocreatine (PCr) recovery, an index of mitochondrial function, in diabetic patients with and without lower extremity complications. METHODS We enrolled healthy control subjects and three groups of patients with type 2 diabetes mellitus: without complications, with peripheral neuropathy, and with both peripheral neuropathy and peripheral arterial disease. We used magnetic resonance spectroscopic measurements to perform continuous measurements of phosphorous metabolites (PCr and inorganic phosphate [Pi]) during a 3-minute graded exercise at the level of the posterior calf muscles (gastrocnemius and soleus muscles). Micro- and macrovascular reactivity measurements also were performed. RESULTS The resting Pi/PCr ratio and PCr at baseline and the maximum reached during exercise were similar in all groups. The postexercise time required for recovery of Pi/PCr ratio and PCr levels to resting levels, an assessment of mitochondrial oxidative phosphorylation, was significantly higher in diabetic patients with neuropathy and those with both neuropathy and peripheral arterial disease (P < .01 for both measurements). These two groups also had higher levels of tumor necrosis factor-α (P < .01) and granulocyte colony-stimulating factor (P < .05). Multiple regression analysis showed that only granulocyte colony-stimulating factor, osteoprotegerin, and tumor necrosis factor-α were significant contributing factors in the variation of the Pi/PCr ratio recovery time. No associations were observed between micro- and macrovascular reactivity measurements and Pi/PCr ratio or PCr recovery time. CONCLUSIONS Mitochondrial oxidative phosphorylation is impaired only in type 2 diabetes mellitus patients with neuropathy whether or not peripheral arterial disease is present and is associated with the increased proinflammatory state observed in these groups.
Collapse
Affiliation(s)
- Francesco Tecilazich
- Joslin-Beth Israel Deaconess Foot Center and Microcirculation Lab, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Fujita S, Mikesky AE, Sato Y, Abe T. Fatigue Characteristics during Maximal Concentric Leg Extension Exercise with Blood Flow Restriction. ACTA ACUST UNITED AC 2008. [DOI: 10.3806/ijktr.3.27] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Phosphocreatine Kinetics in the Calf Muscle of Patients with Bilateral Symptomatic Peripheral Arterial Disease during Exhaustive Incremental Exercise. Mol Imaging Biol 2007; 10:30-9. [DOI: 10.1007/s11307-007-0118-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 09/14/2007] [Accepted: 10/02/2007] [Indexed: 10/22/2022]
|
6
|
Greiner A, Esterhammer R, Bammer D, Messner H, Kremser C, Jaschke WR, Fraedrich G, Schocke MFH. High-energy phosphate metabolism in the calf muscle of healthy humans during incremental calf exercise with and without moderate cuff stenosis. Eur J Appl Physiol 2007; 99:519-31. [PMID: 17206438 DOI: 10.1007/s00421-006-0379-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2006] [Indexed: 10/23/2022]
Abstract
It is known that the relevance of a peripheral stenosis for muscle function increases with exercise. Our intention was to investigate the impact of a moderate cuff stenosis (CS) at 120 mmHg of the superficial femoral artery on high-energy phosphate (HEP) metabolism during isotonic, incremental calf exercise. Serial phosphorus 31 magnetic resonance spectroscopy (31P MRS) and velocity-encoded phase-contrast MR imaging (VEPC MRI) were carried out in each leg of ten healthy male volunteers. Each leg underwent four increments of calf exercise (2, 3, 4 and 5 W) followed by recovery during separate exercise sessions with and without a CS at 120 mmHg. The serial 31P MRS measurements had a time resolution of 10 s. VEPC MRI was performed at the end of each increment during separate sessions. During all increments, we detected significant differences (P < 0.05) in the phosphocreatine (PCr) time constants and the amount of PCr hydrolysis between the sessions without and with CS. Regarding the time courses of the PCr, inorganic phosphate (Pi) and pH level, we observed significant differences (P < 0.002) during exercise and recovery. During both conditions, the end-increment PCr levels as well as blood flow correlated significantly with the mechanical power. The PCr time constants during exercise significantly correlated with the intramuscular pH, but not with blood flow or mechanical power. However, the PCr recovery time constants correlated significantly with blood flow and end-exercise pH. Our study shows that reduction of blood flow due to a peripheral stenosis results in a prolongation of PCr time constants, decreased PCr and pH level as well as increased Pi level during exercise. We believe that 31P MRS during incremental exercise might provide additional information for assessing the relevance of a peripheral stenosis and its impact on muscle function.
Collapse
Affiliation(s)
- Andreas Greiner
- Department of Surgery, Division of Vascular Surgery, Innsbruck Medical University, Anichstrasse 35, 6020, Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Falkensammer J, Stojakovic T, Huber K, Hammerer-Lercher A, Gruber I, Scharnagl H, Fraedrich G, Santner W, Schocke M, Greiner A. Serum levels of ischemia-modified albumin in healthy volunteers after exercise-induced calf-muscle ischemia. Clin Chem Lab Med 2007; 45:535-40. [PMID: 17439334 DOI: 10.1515/cclm.2007.087] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractClin Chem Lab Med 2007;45:535–40.
Collapse
Affiliation(s)
- Juergen Falkensammer
- Division of Vascular Surgery, Medical University Innsbruck, Innsbruck, and 3rd Medical Department, Cardiology and Emergency Medicine, Wilhelminenhospital Vienna, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Schocke MFH, Esterhammer R, Ostermann S, Santner W, Gorny O, Fraedrich G, Jaschke WR, Greiner A. High-Energy Phosphate Metabolism During Calf Ergometry in Patients With Isolated Aorto-Iliac Artery Stenoses. Invest Radiol 2006; 41:874-82. [PMID: 17099426 DOI: 10.1097/01.rli.0000246148.09129.42] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Patients with peripheral arterial disease (PAD) and aorto-iliac atherosclerotic lesions suffer from a broad range of complaints, such as pain at the hip, the thigh, and calf claudication. The purpose of this study was to investigate the high-energy metabolism in the calf muscle of patients with PAD with isolated aorto-iliac stenoses during incremental plantar flexion exercise. MATERIALS AND METHODS Using a 1.5 T whole-body magnetic resonance (MR) scanner, 12 patients with PAD with uni- or bilateral aorto-iliac atherosclerotic lesions and 10 healthy male controls underwent serial phosphor-31 MR spectroscopy during incremental exercise at 2, 3, 4, and 5 W. The phosphocreatine (PCr) time constants were calculated for each increment and recovery using a monoexponential model. In the patient group, the run-off resistance was determined on MR angiograms. In both the patients and the controls, the ankle brachial pressure index was measured. RESULTS The diseased legs exhibited significantly increased PCr time constants during the second and the third workload increment at 3 and 4 W, but not during the first increment at 2 W and recovery compared with normal controls. Only 3 diseased legs succeeded the last increment at 5 W. We detected significant correlations between the ankle brachial pressure index scores and the PCr time constants when including both the diseased and the control legs. The diseased legs showed a significant correlation with the run-off resistance only during the first increment. CONCLUSIONS Our study shows that the impairment of muscle metabolism, expressed by prolonged PCr time constants, occurs with greater work intensities in patients with aorto-iliac disease compared with patients with multisegmental PAD, as recently published, whereas our patients collective exhibited normal PCr recovery time constants. Our findings may help to understand variability of clinical symptoms in aorto-iliac PAD.
Collapse
Affiliation(s)
- Michael F H Schocke
- Department of Radiology, Division of Vascular Surgery, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Lanza IR, Wigmore DM, Befroy DE, Kent-Braun JA. In vivo ATP production during free-flow and ischaemic muscle contractions in humans. J Physiol 2006; 577:353-67. [PMID: 16945975 PMCID: PMC2000678 DOI: 10.1113/jphysiol.2006.114249] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to determine how ATP synthesis and contractility in vivo are altered by ischaemia in working human skeletal muscle. The hypotheses were: (1) glycolytic flux would be higher during ischaemic (ISC) compared to free-flow (FF) muscle contractions, in compensation for reduced oxidative ATP synthesis, and (2) ischaemic muscle fatigue would be related to the accumulation of inhibitory metabolic by-products rather than to the phosphorylation potential ([ATP]/[ADP][P(i)]) of the muscle. Twelve healthy adults (6 men, 6 women) performed six intermittent maximal isometric contractions of the ankle dorsiflexors (12 s contract, 12 s relax), once with intact blood flow and once with local ischaemia by thigh cuff inflation to 220 Torr. Intracellular phosphorous metabolites and pH were measured non-invasively with magnetic resonance spectroscopy, and rates of ATP synthesis through oxidative phosphorylation, anaerobic glycolysis, and the creatine kinase reaction were determined. The force-time integral declined more during ISC (66 +/- 3% initial) than FF (75 +/- 2% initial, P = 0.002), indicating greater fatigue in ISC. [ATP] was preserved in both protocols, indicating matching of ATP production and use under both conditions. Glycolytic flux (mm s(-1)) was similar during FF and ISC (P = 0.16). Total ATP synthesis rate was lower during ISC, despite adjustment for the greater muscle fatigue in this condition (P < 0.001). Fatigue was linearly associated with diprotonated inorganic phosphate (FF r = 0.94 +/- 0.01, ISC r = 0.92 +/- 0.02), but not phosphorylation potential. These data provide novel evidence that ATP supply and demand in vivo are balanced in human skeletal muscle during ischaemic work, not through higher glycolytic flux, but rather through increased metabolic economy and decreased rates of ATP consumption as fatigue ensues.
Collapse
Affiliation(s)
- Ian R Lanza
- Kinesiology Department, Totman 108, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
10
|
Greiner A, Esterhammer R, Messner H, Biebl M, Mühlthaler H, Fraedrich G, Jaschke WR, Schocke MFH. High-energy phosphate metabolism during incremental calf exercise in patients with unilaterally symptomatic peripheral arterial disease measured by phosphor 31 magnetic resonance spectroscopy. J Vasc Surg 2006; 43:978-86. [PMID: 16678693 DOI: 10.1016/j.jvs.2006.01.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Accepted: 01/13/2006] [Indexed: 12/01/2022]
Abstract
BACKGROUND The treadmill exercise test is the most important examination of the functional ability of patients with intermittent claudication or leg pain during exercise, but it does not provide any metabolic information in the calf muscle. The purpose of this study was to investigate the high-energy metabolism in the calf muscle during incremental progressive plantar flexion exercise of a selected peripheral arterial disease (PAD) patient group. METHODS Using a 1.5-T whole-body magnetic resonance scanner, 17 male patients with PAD who had 1 symptomatic and 1 asymptomatic leg and 9 healthy male controls underwent serial phosphor 31 (31P) magnetic resonance spectroscopy during incremental exercise at 2, 3, 4, and 5 W. Furthermore, magnetic resonance angiography was performed, and the ankle-brachial pressure index was determined in the patient group. The runoff resistance (ROR) was separately assessed in each patient's leg. RESULTS The symptomatic legs exhibited significantly increased phosphocreatine (PCr) time constants during the first three workload increments (2-4 W) and the recovery phase compared with the asymptomatic legs and the normal controls. Only two symptomatic legs reached the last increment at 5 W. Compared with the normal controls, the asymptomatic legs showed significantly increased PCr time constants only at 5 W. In the patient group, we detected significant correlations between the PCr time constants and the ROR, as well as the ankle-brachial pressure index. Moreover, the symptomatic legs presented significantly lower PCr levels and pH values at the end of exercise compared with the asymptomatic and control legs. CONCLUSIONS Our study shows that muscle function in PAD patients can be objectively quantified with the help of 31P magnetic resonance spectroscopy and correlates significantly with hemodynamic parameters such as ROR and ankle-brachial pressure index. Consequently, 31P magnetic resonance spectroscopy seems to be a useful method to monitor the muscle function of PAD patients for evaluation of established therapies or new therapeutic strategies during research trials.
Collapse
Affiliation(s)
- Andreas Greiner
- Department of Surgery, Division of Vascular Surgery, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|