1
|
Kume H, Harigane R, Rikimaru M. Involvement of Lysophospholipids in Pulmonary Vascular Functions and Diseases. Biomedicines 2024; 12:124. [PMID: 38255229 PMCID: PMC10813361 DOI: 10.3390/biomedicines12010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Extracellular lysophospholipids (lysophosphatidic acid, lysophosphatidylcholine, sphingosine 1-phosphate, etc.), which are synthesized from phospholipids in the cell membrane, act as lipid mediators, and mediate various cellular responses in constituent cells in the respiratory system, such as contraction, proliferation, migration, and cytoskeletal organization. In addition to these effects, the expression of the adhesion molecules is enhanced by these extracellular lysophospholipids in pulmonary endothelial cells. These effects are exerted via specific G protein-coupled receptors. Rho, Ras, and phospholipase C (PLC) have been proven to be their signaling pathways, related to Ca2+ signaling due to Ca2+ dynamics and Ca2+ sensitization. Therefore, lysophospholipids probably induce pulmonary vascular remodeling through phenotype changes in smooth muscle cells, endothelial cells, and fibroblasts, likely resulting in acute respiratory distress syndrome due to vascular leak, pulmonary hypertension, and pulmonary fibrosis. Moreover, lysophospholipids induce the recruitment of inflammatory cells to the lungs via the enhancement of adhesion molecules in endothelial cells, potentially leading to the development of asthma. These results demonstrate that lysophospholipids may be novel therapeutic targets not only for injury, fibrosis, and hypertension in the lung, but also for asthma. In this review, we discuss the mechanisms of the effects of lysophospholipids on the respiratory system, and the possibility of precision medicine targeting lysophospholipids as treatable traits of these diseases.
Collapse
Affiliation(s)
- Hiroaki Kume
- Department of Infectious Diseases and Respiratory Medicine, Fukushima Medical University Aizu Medical Center, 21-2 Maeda, Tanisawa, Kawahigashi, Aizuwakamatsu City 969-3492, Fukushima, Japan; (R.H.); (M.R.)
| | | | | |
Collapse
|
2
|
Knock GA. NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension. Free Radic Biol Med 2019; 145:385-427. [PMID: 31585207 DOI: 10.1016/j.freeradbiomed.2019.09.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
The last 20-25 years have seen an explosion of interest in the role of NADPH oxidase (NOX) in cardiovascular function and disease. In vascular smooth muscle and endothelium, NOX generates reactive oxygen species (ROS) that act as second messengers, contributing to the control of normal vascular function. NOX activity is altered in response to a variety of stimuli, including G-protein coupled receptor agonists, growth-factors, perfusion pressure, flow and hypoxia. NOX-derived ROS are involved in smooth muscle constriction, endothelium-dependent relaxation and smooth muscle growth, proliferation and migration, thus contributing to the fine-tuning of blood flow, arterial wall thickness and vascular resistance. Through reversible oxidative modification of target proteins, ROS regulate the activity of protein tyrosine phosphatases, kinases, G proteins, ion channels, cytoskeletal proteins and transcription factors. There is now considerable, but somewhat contradictory evidence that NOX contributes to the pathogenesis of hypertension through oxidative stress. Specific NOX isoforms have been implicated in endothelial dysfunction, hyper-contractility and vascular remodelling in various animal models of hypertension, pulmonary hypertension and pulmonary arterial hypertension, but also have potential protective effects, particularly NOX4. This review explores the multiplicity of NOX function in the healthy vasculature and the evidence for and against targeting NOX for antihypertensive therapy.
Collapse
Affiliation(s)
- Greg A Knock
- Dpt. of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, UK.
| |
Collapse
|
3
|
Huang YL, Chang CL, Tang CH, Lin YC, Ju TK, Huang WP, Lee H. Extrinsic sphingosine 1-phosphate activates S1P5 and induces autophagy through generating endoplasmic reticulum stress in human prostate cancer PC-3 cells. Cell Signal 2013; 26:611-8. [PMID: 24333325 DOI: 10.1016/j.cellsig.2013.11.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/27/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lysophospholipid that binds to a family of G protein-coupled receptors (GPCRs), termed S1P1-S1P5. Our previous study has reported that S1P induces autophagy in human prostate cancer PC-3 cell. In addition, S1P-induced autophagy plays a prosurvival role in PC-3 cells. Accumulating evidence has shown that the autophagy responses triggered by ER stress signaling have cytoprotective effects. Thus, we attempted to investigate whether S1P-induced autophagy is a result of triggering ER stress in PC-3 cells. By monitoring XBP-1 mRNA splicing, a characteristic of ER stress, we demonstrate that S1P triggers ER stress in a concentration-dependent and time-dependent manner. Moreover, DiH S1P, a membrane-nonpermeable S1P analog without intracellular effects also enhances ER stress. Meanwhile, we also show that S1P5 is required for S1P-induced ER stress by using RNA interference experiments. Furthermore, signaling analyses revealed that PI3K, PLC, and ROS production were involved in S1P's effects on ER stress induction. On the other hand, knockdown of XBP-1 abolished S1P-induced autophagy. In summary, our results demonstrate for the first time that the extracellular S1P-triggered ER stress is responsible for autophagy induction in PC-3 cells.
Collapse
Affiliation(s)
- Yuan-Li Huang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan, ROC; Graduate Institute of Basic Medical Science, China Medical University and Hospital, Taichung, Taiwan
| | - Chi-Lun Chang
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University and Hospital, Taichung, Taiwan
| | - Yueh-Chien Lin
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Tsai-Kai Ju
- Instrumentation Center, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC; Technology Commons, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Wei-Pang Huang
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC; Technology Commons, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC.
| | - Hsinyu Lee
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC; Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC; Center for Biotechnology, National Taiwan University, Taipei, Taiwan, ROC; Angiogenesis Research Center, National Taiwan University, Taipei, Taiwan, ROC; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
4
|
Phospholipases of mineralization competent cells and matrix vesicles: roles in physiological and pathological mineralizations. Int J Mol Sci 2013; 14:5036-129. [PMID: 23455471 PMCID: PMC3634480 DOI: 10.3390/ijms14035036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 02/08/2023] Open
Abstract
The present review aims to systematically and critically analyze the current knowledge on phospholipases and their role in physiological and pathological mineralization undertaken by mineralization competent cells. Cellular lipid metabolism plays an important role in biological mineralization. The physiological mechanisms of mineralization are likely to take place in tissues other than in bones and teeth under specific pathological conditions. For instance, vascular calcification in arteries of patients with renal failure, diabetes mellitus or atherosclerosis recapitulates the mechanisms of bone formation. Osteoporosis—a bone resorbing disease—and rheumatoid arthritis originating from the inflammation in the synovium are also affected by cellular lipid metabolism. The focus is on the lipid metabolism due to the effects of dietary lipids on bone health. These and other phenomena indicate that phospholipases may participate in bone remodelling as evidenced by their expression in smooth muscle cells, in bone forming osteoblasts, chondrocytes and in bone resorbing osteoclasts. Among various enzymes involved, phospholipases A1 or A2, phospholipase C, phospholipase D, autotaxin and sphingomyelinase are engaged in membrane lipid remodelling during early stages of mineralization and cell maturation in mineralization-competent cells. Numerous experimental evidences suggested that phospholipases exert their action at various stages of mineralization by affecting intracellular signaling and cell differentiation. The lipid metabolites—such as arachidonic acid, lysophospholipids, and sphingosine-1-phosphate are involved in cell signaling and inflammation reactions. Phospholipases are also important members of the cellular machinery engaged in matrix vesicle (MV) biogenesis and exocytosis. They may favour mineral formation inside MVs, may catalyse MV membrane breakdown necessary for the release of mineral deposits into extracellular matrix (ECM), or participate in hydrolysis of ECM. The biological functions of phospholipases are discussed from the perspective of animal and cellular knockout models, as well as disease implications, development of potent inhibitors and therapeutic interventions.
Collapse
|
5
|
Urokinase requires NAD(P)H oxidase to transactivate the epidermal growth factor receptor. Surgery 2012; 152:879-85. [PMID: 22575880 DOI: 10.1016/j.surg.2012.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 03/01/2012] [Indexed: 11/21/2022]
Abstract
BACKGROUND Cell migration is an integral part of the development of intimal hyperplasia, and proteases are pivotal components in the process. Cell migration in response to urokinase is mediated through the aminoterminal fragment (ATF) of the protein. This study examines the role of NAD(P)H oxidase during epidermal growth factor receptor (EGFR) transactivation by ATF in human vascular smooth muscle cells (VSMC). METHODS Human VSMCs were cultured in vitro. Linear wound and Boyden microchemotaxis assays of migration in response to ATF were performed in the presence and absence of NAD(P)H oxidase inhibitors (diphenyleneiodonium [DPI] and apocynin) and small interfering RNA (siRNA) to Nox1. Additional assays were performed to examine the upstream pathways that lead to NAD(P)H oxidase activity. Assays were also performed for EGFR activation. RESULTS ATF produced concentration-dependent VSMC migration, which was inhibited by increasing concentrations of DPI and apocynin. ATF was shown to induce time-dependent EGFR phosphorylation, which peaked at 4-fold greater than control. This response was inhibited by DPI and apocynin in a concentration-dependent manner. ATF induced a concentration-dependent increase in intracellular oxygen free radical species, which was mitigated by the presence of DPI and apocynin. Inhibition of Gβγ by βARK(CT) reduced both NAD(P)H oxidase activity and EGFR activation. Inhibition of rac, which allows the NAD(P)H complex to assemble on the membrane, and inhibition of src, which induces assembly of the complex, both reduced ATF-dependent NAD(P)H oxidase activity and EGFR phosphorylation. siRNA to Nox1 prevented ATF-mediated EGFR activation and cell migration. CONCLUSION ATF requires NAD(P)H oxidase activity through a Gβγ-, rac-, and src-mediated pathway to facilitate transactivation of EGFR and VSMC migration.
Collapse
|
6
|
Duru EA, Fu Y, Davies MG. Role of S-1-P receptors and human vascular smooth muscle cell migration in diabetes and metabolic syndrome. J Surg Res 2012; 177:e75-82. [PMID: 22480845 DOI: 10.1016/j.jss.2011.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 11/18/2011] [Accepted: 12/06/2011] [Indexed: 11/25/2022]
Abstract
BACKGROUND Sphingosine-1-phosphate (S-1-P) is a bioactive sphingolipid released from activated platelets that stimulates migration of vascular smooth muscle cells (VSMC) in vitro. S-1-P is associated with oxidized low-density lipoprotein (oxLDL) and is important in vessel remodeling. S-1-P will activate multiple G protein-coupled receptors (S-1-PR 1 to 5), which can regulate multiple cellular functions, including cell migration. The aim of this study is to examine the role of S-1-PR signaling during smooth muscle cell migration in response to S-1-P. METHODS Human VSMCs were cultured in vitro. Expression of S-1-PR 1 to 5 was determined in conditions mirroring diabetes (40 mM glucose) and metabolic syndrome (25 mM glucose with 20 μM linoleic acid and 20 μM oleic acid). Linear wound and Boyden microchemotaxis assays of migration were performed in the presence of S-1-P with and without siRNA against S-1-PR 1 to 5. Assays were performed for activation of ERK1/2, p38(MAPK) and JNK. RESULTS Human VSMCs express S-1-PR1, S-1-PR2, and S-1-PR3. There was no significant expression of S-1-PR4 and S-1-PR5. The expression of S-1-PR1 and S-1-PR3 is enhanced under high glucose conditions and metabolic syndrome conditions. Migration of VSMC in response to S-1-P is enhanced 2-fold by diabetes and 4-fold by metabolic syndrome. In diabetes, S-1-PR1 expression is enhanced, while S-1-PR2 and S-1-PR3 expression are both maintained. In metabolic syndrome, S-1-PR1 and 3 expressions are enhanced and that of S-1-PR2 is reduced. siRNA to S-1-PR1 results in a 2-fold reduction in S-1-P-mediated cell migration under all conditions. siRNA to S-1-PR2 enhanced cell migration only under normal conditions, while siRNA S-1-PR3 decreased migration in metabolic syndrome only. Down-regulation of S-1-PR1 reduced ERK1/2 activation in response to S-1-P, while that of S-1-PR2 had no effect under normal conditions. In diabetes, down-regulation of S-1-PR1 reduced activation of all three MAPKs. In metabolic syndrome, down-regulation of S-1-PR1 and S-1-PR3 reduced activation of all three MAPKs. CONCLUSION S-1-PR 1, 2, and 3 regulate human VSMC migration and their expression level and function are modulated by conditions simulating diabetes and metabolic syndrome.
Collapse
Affiliation(s)
- Enrico A Duru
- Vascular Biology and Therapeutics Program, The Methodist Hospital Research Institute, Houston, TX, USA
| | | | | |
Collapse
|
7
|
SRC regulates sphingosine-1-phosphate mediated smooth muscle cell migration. J Surg Res 2011; 175:30-4. [PMID: 21920544 DOI: 10.1016/j.jss.2011.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 06/24/2011] [Accepted: 07/11/2011] [Indexed: 11/23/2022]
Abstract
BACKGROUND Sphingosine-1-phosphate (S-1-P) is a bioactive sphingolipid released from activated platelets at sites of arterial injury that stimulates migration of smooth muscle cells (SMC). The kinase src is a significant focal point in transmembrane signaling. This study examines the role of src during smooth muscle cell migration in response to S-1-P. METHODS Human coronary arterial SMCs were cultured in vitro. Boyden microchemotaxis assays of migration were performed in response to S-1-P in the presence and absence the src inhibitor (PP2, 10 μM) and a dominant negative src construct (DNsrc). siRNA to S-1-P receptors was used to down-regulate the S-1-P receptors. Western blotting was performed for src and MAPK phosphorylation. RESULTS Inhibition of src with PP2 but not PP3 partially blocked S-1-P-mediated cell migration. S-1-P induced time-dependent activation of src, which was inhibited by PP2 and adenoviral DNsrc. PP3 or an empty vector had no effect. Activation of src by S-1-P was inhibited by siRNA to S-1-PR1 and S-1-PR3 but not by S-1-PR2. When the VSMC were transfected with adenovirus containing βARK(CT), an inhibitor to Gβγ, src activation was significantly attenuated. Src inhibition with PP2 reduced p38(MAPK) and JNK activation but did not alter ERK1/2 activation. CONCLUSION S-1-P mediated VSMC migration is modulated by a G-protein-coupled src pathway partially through src-mediated p38(MAPK) and JNK signaling and requires S-1-PR1 and S-1-PR3 receptors.
Collapse
|
8
|
Kim ES, Kim JS, Kim SG, Hwang S, Lee CH, Moon A. Sphingosine 1-phosphate regulates matrix metalloproteinase-9 expression and breast cell invasion through S1P3-Gαq coupling. J Cell Sci 2011; 124:2220-30. [PMID: 21652634 DOI: 10.1242/jcs.076794] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent evidence suggests that inflammation is involved in malignant progression of breast cancer. Sphingosine 1-phosphate (S1P), acting on the G-protein-coupled receptors, is known as a potent inflammatory mediator. In this study, the effect of the inflammatory lipid S1P on the regulation of invasive/migratory phenotypes of MCF10A human breast epithelial cells was investigated to elucidate a causal relationship between inflammation and the control of invasiveness of breast cells. We show that S1P causes induction of matrix metalloproteinase-9 (MMP-9) in vitro and in vivo, and thus enhances invasion and migration. We also show that fos plays a crucial role in the transcriptional activation of MMP-9 by S1P. In addition, activation of extracellular-signal-regulated kinases 1 and 2 (ERK1/2), p38 and alpha serine/threonine-protein kinase (Akt) are involved in the process of S1P-mediated induction of MMP-9 expression and invasion. Activation of the S1P receptor S1P₃ and G(αq) are required for S1P-induced invasive/migratory responses, suggesting that the enhancement of S1P-mediated invasiveness is triggered by the specific coupling of S1P₃ to the heterotrimeric G(αq) subunit. Activation of phospholipase C-β₄ and intracellular Ca²⁺ release are required for S1P-induced MMP-9 upregulation. Taken together, this study demonstrated that S1P regulates MMP-9 induction and invasiveness through coupling of S1P₃ and G(αq) in MCF10A cells, thus providing a molecular basis for the crucial role of S1P in promoting breast cell invasion.
Collapse
Affiliation(s)
- Eun-Sook Kim
- College of Pharmacy, Duksung Women's University, Seoul 132-714, Korea
| | | | | | | | | | | |
Collapse
|
9
|
Straub AC, Klei LR, Stolz DB, Barchowsky A. Arsenic requires sphingosine-1-phosphate type 1 receptors to induce angiogenic genes and endothelial cell remodeling. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1949-58. [PMID: 19349368 DOI: 10.2353/ajpath.2009.081016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Arsenic in drinking water is a major public health concern as it increases risk and incidence of cardiovascular disease and cancer. Arsenic exposure affects multiple vascular beds, promoting liver sinusoidal capillarization and portal hypertension, ischemic heart disease, peripheral vascular disease, and tumor angiogenesis. While Rac1-GTPase and NADPH oxidase activities are essential for arsenic-stimulated endothelial cell signaling for angiogenesis or liver sinusoid capillarization, the mechanism for initiating these effects is unknown. We found that arsenic-stimulated cell signaling and angiogenic gene expression in human microvascular endothelial cells were Pertussis toxin sensitive, indicating a G-protein coupled signaling pathway. Incubating human microvascular endothelial cells with the sphingosine-1-phosphate type 1 receptor (S1P(1)) inhibitor VPC23019 or performing small interfering RNA knockdown of S1P(1) blocked arsenic-stimulated HMVEC angiogenic gene expression and tube formation, but did not affect induction of either HMOX1 or IL8. Liver sinusoidal endothelial cells (LSECs) defenestrate and capillarize in response to aging and environmental oxidant stresses. We found that S1P(1) was enriched on LSECs in vivo and in primary cell culture and that VPC23019 inhibited both sphingosine-1-phosphate-stimulated and arsenic-stimulated LSEC oxidant generation and defenestration. These studies identified novel roles for S1P(1) in mediating arsenic stimulation of both angiogenesis and pathogenic LSEC capillarization, as well as demonstrating a role for S1P(1) in mediating environmental responses in the liver vasculature, providing possible mechanistic insight into arsenic-induced vascular pathogenesis and disease.
Collapse
Affiliation(s)
- Adam C Straub
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | |
Collapse
|
10
|
Hu T, Luan R, Zhang H, Lau WB, Wang Q, Zhang Y, Wang HC, Tao L. Hydrogen peroxide enhances osteopontin expression and matrix metalloproteinase activity in aortic vascular smooth muscle cells. Clin Exp Pharmacol Physiol 2008; 36:626-30. [PMID: 19076167 DOI: 10.1111/j.1440-1681.2008.05124.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Restenosis after percutaneous coronary intervention (PCI) is a major clinical complication. However, the underlying mechanisms remain poorly understood. The present aim of the present study was to test the hypothesis that reactive oxygen species (ROS) enhance osteopontin (OPN) expression and increase matrix metalloproteinase (MMP)-2 activity (two major factors that contribute to restenosis) in aortic vascular smooth muscle cells (VSMC), thus facilitating restenosis. 2. Primary cultured rat aortic VSMC were exposed to different concentrations (10, 50 and 100 micromol/L) of H(2)O(2). The expression of OPN mRNA and protein was determined by reverse transcription-polymerase chain reaction and Western blotting, respectively. The activity of MMP-2 was determined by gelatin zymography. 3. The expression of OPN mRNA and protein in VSMC was enhanced by H(2)O(2) in a dose-dependent manner. In addition, H(2)O(2) at all concentrations tested (which are comparable to those seen in diabetic vascular tissues) significantly increased MMP-2 activity in VSMC. 4. Because vascular ROS production is significantly increased in patients with ischaemic disease and OPN and MMP-2 have been shown to play critical role in restenosis, the results of the present study strongly suggest that a ROS-initiated and OPN- and MMP-2-mediated signalling pathway may play an important role in accelerated restenosis after PCI in patients with ischaemic disease. Therefore, the H(2)O(2)-OPN/MMP-2 system may be a new therapeutic target in reducing restenosis in patients undergoing PCI.
Collapse
Affiliation(s)
- Tao Hu
- Deparrment of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Roztocil E, Nicholl SM, Davies MG. Mechanisms of sphingosine-1-phosphate-induced akt-dependent smooth muscle cell migration. Surgery 2008; 145:34-41. [PMID: 19081473 DOI: 10.1016/j.surg.2008.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 08/04/2008] [Indexed: 11/16/2022]
Abstract
BACKGROUND Sphingosine-1-phosphate (S-1-P) is a bioactive sphingolipid released from activated platelets that stimulates migration of vascular smooth muscle cells (VSMC) in vitro. S-1-P will activate akt, which can regulate multiple cellular functions including cell migration. Akt activation is downstream of phosphatidylinositol 3'-kinase (PI3-K) and phosphoinositide-dependent protein kinase-1 (PDK1). The objective of this study was to examine the regulation of akt signaling during smooth muscle cell (SMC) migration in response to S-1-P. METHODS Murine arterial SMC were cultured in vitro. Linear wound and microchemotaxis assays of migration in Boyden chambers were performed in the presence of S-1-P with and without an akt inhibitor (aktI). Assays were performed for PI3-K, PDK1, akt, and GSK3beta in the presence of various inhibitors and after transfection with the G beta gamma inhibitor beta ARK(CT). RESULTS S-1-P induced time-dependent PI3-K, PDK1, and akt activation. The migratory responses in both assays to S-1-P were blocked by aktI. Activation of akt and dephosphorylation of its downstream kinase, GSK3 beta, were inhibited by aktI. Inhibition of PI3-K with LY294002 significantly decreased activation of both PI3-K and akt. Inhibition of G beta gamma inhibited akt activation through a decrease in activation of both PI3-K and PDK1. Although inhibition of the ras with manumycin A had no effect, inhibition of rho with C3 limited activation of both PI3K and akt. PDK1 responses were unchanged by inhibition of GTPases. Inhibiting the generation of reactive oxygen species with N-acetylcysteine and of epidermal growth factor receptor with AG1478 inhibited PDK1 activation in response to S-1-P. CONCLUSION S-1-P-mediated migration is akt-dependent. S-1-P-mediated akt phosphorylation is controlled by a G beta gamma-dependent PI3-K activation, which requires the GTPase rho and G beta gamma. PDK1 activation requires G beta gamma-dependent generation of reactive oxygen species and epidermal growth factor receptor activation.
Collapse
Affiliation(s)
- Elisa Roztocil
- Department of Cardiovascular Surgery, Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX 77030, USA
| | | | | |
Collapse
|