1
|
Bruhn PJ, Jessen ML, Eiberg J, Ghulam Q. Hypoxia inducible factor 1-alpha in the pathogenesis of abdominal aortic aneurysms in vivo: A narrative review. JVS Vasc Sci 2023; 5:100189. [PMID: 38379781 PMCID: PMC10877407 DOI: 10.1016/j.jvssci.2023.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/21/2023] [Indexed: 02/22/2024] Open
Abstract
Abdominal aortic aneurysms (AAAs) are relatively common, primarily among older men, and, in the case of rupture, are associated with high mortality. Although procedure-related morbidity and mortality have improved with the advent of endovascular repair, noninvasive treatment and improved assessment of AAA rupture risk should still be sought. Several cellular pathways seem contributory to the histopathologic changes that drive AAA growth and rupture. Hypoxia inducible factor 1-alpha (HIF-1α) is an oxygen-sensitive protein that accumulates in the cytoplasm under hypoxic conditions and regulates a wide array of downstream effectors to hypoxia. Examining the potential role of HIF-1α in the pathogenesis of AAAs is alluring, because local hypoxia is known to be present in the AAA vessel wall. A systematic scoping review was performed to review the current evidence regarding the role of HIF-1α in AAA disease in vivo. After screening, 17 studies were included in the analysis. Experimental animal studies and human studies show increased HIF-1α activity in AAA tissue compared with healthy aorta and a correlation of HIF-1α activity with key histopathologic features of AAA disease. In vivo HIF-1α inhibition in animals protects against AAA development and growth. One study reveals a positive correlation between HIF-1α-activating genetic polymorphisms and the risk of AAA disease in humans. The main findings suggest a causal role of HIF-1α in the pathogenesis of AAAs in vivo. Further research into the HIF-1α pathway in AAA disease might reveal clinically applicable pharmacologic targets or biomarkers relevant in the treatment and monitoring of AAA disease.
Collapse
Affiliation(s)
| | | | - Jonas Eiberg
- Department of Vascular Surgery, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Academy of Medical Education and Simulation, University of Copenhagen, Copenhagen, Denmark
| | - Qasam Ghulam
- Department of Vascular Surgery, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
2
|
Ochoa Chaar CI, Kim T, Alameddine D, DeWan A, Guzman R, Dardik A, Grossetta Nardini HK, Wallach JD, Kullo I, Murray M. Systematic review and meta-analysis of the genetics of peripheral arterial disease. JVS Vasc Sci 2023; 5:100133. [PMID: 38314202 PMCID: PMC10832467 DOI: 10.1016/j.jvssci.2023.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/27/2023] [Indexed: 02/06/2024] Open
Abstract
Background Peripheral artery disease (PAD) impacts more than 200 million people worldwide. The understanding of the genetics of the disease and its clinical implications continue to evolve. This systematic review provides a comprehensive summary of all DNA variants that have been studied in association with the diagnosis and progression of PAD, with a meta-analysis of the ones replicated in the literature. Methods A systematic review of all studies examining DNA variants associated with the diagnosis and progression of PAD was performed. Candidate gene and genome-wide association studies (GWAS) were included. A meta-analysis of 13 variants derived from earlier smaller candidate gene studies of the diagnosis of PAD was performed. The literature on the progression of PAD was limited, and a meta-analysis was not feasible because of the heterogeneity in the criteria used to characterize it. Results A total of 231 DNA variants in 112 papers were studied for the association with the diagnosis of PAD. There were significant variations in the definition of PAD and the selection of controls in the various studies. GWAS have established 19 variants associated with the diagnosis of PAD that were replicated in several large patient cohorts. Only variants in intercellular adhesion molecule-1 (rs5498), IL-6 (rs1800795), and hepatic lipase (rs2070895) showed significant association with the diagnosis of PAD. However, these variants were not noted in the published GWAS. Conclusions Genetic research in the diagnosis of PAD has significant heterogeneity, but recent GWAS have demonstrated variants consistently associated with the disease. More research focusing on the progression of PAD is needed to identify patients at risk of adverse events and develop strategies that would improve their outcomes.
Collapse
Affiliation(s)
- Cassius Iyad Ochoa Chaar
- Division of Vascular Surgery and Endovascular Therapy, Yale University School of Medicine, New Haven, CT
| | - Tanner Kim
- Department of Surgery, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI
| | - Dana Alameddine
- Division of Vascular Surgery and Endovascular Therapy, Yale University School of Medicine, New Haven, CT
| | - Andrew DeWan
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT
| | - Raul Guzman
- Division of Vascular Surgery and Endovascular Therapy, Yale University School of Medicine, New Haven, CT
| | - Alan Dardik
- Division of Vascular Surgery and Endovascular Therapy, Yale University School of Medicine, New Haven, CT
| | | | - Joshua D. Wallach
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Iftikhar Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Michael Murray
- Department of Genetics, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
3
|
Zheng JL, Wang X, Song Z, Zhou P, Zhang GJ, Diao JJ, Han CE, Jia GY, Zhou X, Zhang BQ. Network pharmacology and molecular docking to explore Polygoni Cuspidati Rhizoma et Radix treatment for acute lung injury. World J Clin Cases 2023; 11:4579-4600. [PMID: 37469744 PMCID: PMC10353494 DOI: 10.12998/wjcc.v11.i19.4579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Polygoni Cuspidati Rhizoma et Radix (PCRR), a well-known traditional Chinese medicine (TCM), inhibits inflammation associated with various human diseases. However, the anti-inflammatory effects of PCRR in acute lung injury (ALI) and the underlying mechanisms of action remain unclear.
AIM To determine the ingredients related to PCRR for treatment of ALI using multiple databases to obtain potential targets for fishing.
METHODS Recognized and candidate active compounds for PCRR were obtained from Traditional Chinese Medicine Systems Pharmacology, STITCH, and PubMed databases. Target ALI databases were built using the Therapeutic Target, DrugBank, DisGeNET, Online Mendelian Inheritance in Man, and Genetic Association databases. Network pharmacology includes network construction, target prediction, topological feature analysis, and enrichment analysis. Bioinformatics resources from the Database for Annotation, Visualization and Integrated Discovery were utilized for gene ontology biological process and Kyoto Encyclopedia of Genes and Genomes network pathway enrichment analysis, and molecular docking techniques were adopted to verify the combination of major active ingredients and core targets.
RESULTS Thirteen bioactive compounds corresponding to the 433 PCRR targets were identified. In addition, 128 genes were closely associated with ALI, 60 of which overlapped with PCRR targets and were considered therapeutically relevant. Functional enrichment analysis suggested that PCRR exerted its pharmacological effects in ALI by modulating multiple pathways, including the cell cycle, cell apoptosis, drug metabolism, inflammation, and immune modulation. Molecular docking results revealed a strong associative relationship between the active ingredient and core target.
CONCLUSION PCRR alleviates ALI symptoms via molecular mechanisms predicted by network pharmacology. This study proposes a strategy to elucidate the mechanisms of TCM at the network pharmacology level.
Collapse
Affiliation(s)
- Jia-Lin Zheng
- Department of Respiratory, The First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong Province, China
| | - Xiao Wang
- Department of Respiratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
| | - Zhe Song
- Department of Respiratory, The First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong Province, China
| | - Peng Zhou
- Department of Respiratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
| | - Gui-Ju Zhang
- Department of Respiratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
| | - Juan-Juan Diao
- Department of Respiratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
| | - Cheng-En Han
- Department of Respiratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
| | - Guang-Yuan Jia
- Department of Respiratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
| | - Xu Zhou
- Department of Respiratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
| | - Bao-Qing Zhang
- Department of Respiratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
| |
Collapse
|
4
|
The human hypoxia-inducible factor 1alpha gene in anthracycline-induced heart failure. COR ET VASA 2022. [DOI: 10.33678/cor.2022.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Kurhaluk N, Tkachenko H, Lukash O. Photoperiod-induced alterations in biomarkers of oxidative stress and biochemical pathways in rats of different ages: Focus on individual physiological reactivity. Chronobiol Int 2021; 38:1673-1691. [PMID: 34121553 DOI: 10.1080/07420528.2021.1939364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Effects of photoperiodicity caused by both the age and individual physiological reactivity estimated by resistance to hypobaric hypoxia on the levels of lipid peroxidation, protein oxidation (aldehydic and ketonic derivatives), total antioxidant capacity, activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase), and biochemical parameters of aerobic and anaerobic pathways in hepatic tissue depending on the blood melatonin level were studied. The study was carried out on 96 6- and 21-month-old male rats divided into hypoxia resistance groups (LR, low resistance, HR, high resistance). The analyses were conducted at four photoperiods: winter (January), spring (March), summer (July), and autumn (October). Our results indicate a significant effect of melatonin, i.e. over 80%, revealed by the complete statistical model of the studied biomarkers of oxidative stress and oxygen-dependent parameters of metabolism. The effects of melatonin vary with age and between photoperiods, which in turn was determined by individual physiological reactivity. In terms of the photoperiods, the melatonin content in the group of the adult animals with low resistance to hypoxia decreased from winter to summer. In a group of old animals in comparison with adults, the melatonin content in all the studied photoperiods was much lower as well, regardless of their hypoxia resistance. In the group of old animals with low resistance to hypoxia, the melatonin content decreased throughout the photoperiods as follows: winter, autumn, summer, and spring. As can be concluded, spring is a critical period for old animals, particularly those with low hypoxia resistance. The important role of melatonin in these processes was also confirmed by our correlation analysis between oxidative stress biomarkers, energy-related metabolites, and antioxidant enzymes in the hepatic tissue of rats of different ages, with different resistance to hypoxia, and in different photoperiods. The melatonin concentration in the blood of highly resistant rats was higher than in those with low resistance to hypoxia. Melatonin determines the individual constitutional level of resistance to hypoxia and is responsible for individual enzymatic antioxidative responses, depending on the four photoperiods. Our studies have shown that melatonin levels are related to the redox characteristics of antioxidant defenses against lipid peroxidation and oxidative modification of proteins in old rats with low resistance to hypoxia, compared to a group of highly resistant adults. Finally, the melatonin-related mechanisms of antioxidative protection depend on metabolic processes in hepatic tissue and exhibit photoperiodical variability in adult and old rats.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Zoology and Animal Physiology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland
| | - Halyna Tkachenko
- Department of Zoology and Animal Physiology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland
| | - Oleksandr Lukash
- Department of Ecology and Nature Protection, T.G. Shevchenko National University "Chernihiv Collegium", Chernihiv, Ukraine
| |
Collapse
|
6
|
Systematic review of genome-wide association studies of abdominal aortic aneurysm. Atherosclerosis 2021; 327:39-48. [PMID: 34038762 DOI: 10.1016/j.atherosclerosis.2021.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS Abdominal aortic aneurysm (AAA) is an important cause of death worldwide and has an estimated heritability between 70 and 77%. Genome-wide association studies (GWAS) are an established way to discover genetic risk variants. The aim of this study was to systematically review the findings and quality of previous AAA GWAS. METHODS The Medline, PubMed, Web of Science and relevant genetic databases were searched to identify previous AAA GWAS. A framework was developed to grade the methodological quality of the GWAS. Data from included studies were extracted to assess methods and findings. RESULTS Eight case-control studies were included. Thirty-three of the 38 total single nucleotide polymorphisms (SNPs) previously reported were associated with AAA diagnosis at genome-wide significance (p < 5.0 × 10-8). The CDKN2B antisense RNA-1 gene had the most significant association with AAA diagnosis (p = 6.94 × 10-29 and p = 1.54 × 10-33 for rs4007642 and rs10757274 respectively). Age, sex and smoking history were not reported for the complete cohort in any of the included studies, although five of the eight studies adjusted or matched for at least two confounding variables. All included studies had important design limitations including lack of sample size estimation, inconsistent case and control ascertainment and limited phenotyping of the AAAs. AAA growth was assessed in one GWAS, however, no significant associations with the reported SNPs were found. CONCLUSIONS This systematic review identified 33 SNPs associated with AAA diagnosis at genome-wide significance previously validated in multiple cohorts. The association between SNPs and AAA growth was not adequately examined. Previous GWAS have a number of design limitations.
Collapse
|
7
|
Dzhalilova D, Makarova O. Differences in Tolerance to Hypoxia: Physiological, Biochemical, and Molecular-Biological Characteristics. Biomedicines 2020; 8:E428. [PMID: 33080959 PMCID: PMC7603118 DOI: 10.3390/biomedicines8100428] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023] Open
Abstract
Hypoxia plays an important role in the development of many infectious, inflammatory, and tumor diseases. The predisposition to such disorders is mostly provided by differences in basic tolerance to oxygen deficiency, which we discuss in this review. Except the direct exposure of different-severity hypoxia in decompression chambers or in highland conditions, there are no alternative methods for determining organism tolerance. Due to the variability of the detection methods, differences in many parameters between tolerant and susceptible organisms are still not well-characterized, but some of them can serve as biomarkers of susceptibility to hypoxia. At the moment, several potential biomarkers in conditions after hypoxic exposure have been identified both in experimental animals and humans. The main potential biomarkers are Hypoxia-Inducible Factor (HIF)-1, Heat-Shock Protein 70 (HSP70), and NO. Due to the different mechanisms of various high-altitude diseases, biomarkers may not be highly specific and universal. Therefore, it is extremely important to conduct research on hypoxia susceptibility biomarkers. Moreover, it is important to develop a method for the evaluation of organisms' basic hypoxia tolerance without the necessity of any oxygen deficiency exposure. This can contribute to new personalized medicine approaches' development for diagnostics and the treatment of inflammatory and tumor diseases, taking into account hypoxia tolerance differences.
Collapse
Affiliation(s)
- Dzhuliia Dzhalilova
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution ‘Research Institute of Human Morphology’, Moscow 117418, Russia;
| | | |
Collapse
|
8
|
Li DY, Busch A, Jin H, Chernogubova E, Pelisek J, Karlsson J, Sennblad B, Liu S, Lao S, Hofmann P, Bäcklund A, Eken SM, Roy J, Eriksson P, Dacken B, Ramanujam D, Dueck A, Engelhardt S, Boon RA, Eckstein HH, Spin JM, Tsao PS, Maegdefessel L. H19 Induces Abdominal Aortic Aneurysm Development and Progression. Circulation 2019; 138:1551-1568. [PMID: 29669788 DOI: 10.1161/circulationaha.117.032184] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Long noncoding RNAs have emerged as critical molecular regulators in various biological processes and diseases. Here we sought to identify and functionally characterize long noncoding RNAs as potential mediators in abdominal aortic aneurysm development. METHODS We profiled RNA transcript expression in 2 murine abdominal aortic aneurysm models, Angiotensin II (ANGII) infusion in apolipoprotein E-deficient ( ApoE-/-) mice (n=8) and porcine pancreatic elastase instillation in C57BL/6 wild-type mice (n=12). The long noncoding RNA H19 was identified as 1 of the most highly upregulated transcripts in both mouse aneurysm models compared with sham-operated controls. This was confirmed by quantitative reverse transcription-polymerase chain reaction and in situ hybridization. RESULTS Experimental knock-down of H19, utilizing site-specific antisense oligonucleotides (LNA-GapmeRs) in vivo, significantly limited aneurysm growth in both models. Upregulated H19 correlated with smooth muscle cell (SMC) content and SMC apoptosis in progressing aneurysms. Importantly, a similar pattern could be observed in human abdominal aortic aneurysm tissue samples, and in a novel preclinical LDLR-/- (low-density lipoprotein receptor) Yucatan mini-pig aneurysm model. In vitro knock-down of H19 markedly decreased apoptotic rates of cultured human aortic SMCs, whereas overexpression of H19 had the opposite effect. Notably, H19-dependent apoptosis mechanisms in SMCs appeared to be independent of miR-675, which is embedded in the first exon of the H19 gene. A customized transcription factor array identified hypoxia-inducible factor 1α as the main downstream effector. Increased SMC apoptosis was associated with cytoplasmic interaction between H19 and hypoxia-inducible factor 1α and sequential p53 stabilization. Additionally, H19 induced transcription of hypoxia-inducible factor 1α via recruiting the transcription factor specificity protein 1 to the promoter region. CONCLUSIONS The long noncoding RNA H19 is a novel regulator of SMC survival in abdominal aortic aneurysm development and progression. Inhibition of H19 expression might serve as a novel molecular therapeutic target for aortic aneurysm disease.
Collapse
Affiliation(s)
- Daniel Y Li
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar (D.Y.L., A. Busch, J.P., S.L., H.-H.E., L.M.), Technical University Munich, and German Center for Cardiovascular Research (DZHK), partner site Munich, Germany
| | - Albert Busch
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar (D.Y.L., A. Busch, J.P., S.L., H.-H.E., L.M.), Technical University Munich, and German Center for Cardiovascular Research (DZHK), partner site Munich, Germany
| | - Hong Jin
- Department of Medicine (H.J., E.C., A. Bäcklund; S.M.E., P.E., L.M.), Karolinska Institutet, Stockholm, Sweden
| | - Ekaterina Chernogubova
- Department of Medicine (H.J., E.C., A. Bäcklund; S.M.E., P.E., L.M.), Karolinska Institutet, Stockholm, Sweden
| | - Jaroslav Pelisek
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar (D.Y.L., A. Busch, J.P., S.L., H.-H.E., L.M.), Technical University Munich, and German Center for Cardiovascular Research (DZHK), partner site Munich, Germany
| | - Joakim Karlsson
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden (J.K.)
| | - Bengt Sennblad
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Sweden (B.S.)
| | - Shengliang Liu
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar (D.Y.L., A. Busch, J.P., S.L., H.-H.E., L.M.), Technical University Munich, and German Center for Cardiovascular Research (DZHK), partner site Munich, Germany
| | - Shen Lao
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar (D.Y.L., A. Busch, J.P., S.L., H.-H.E., L.M.), Technical University Munich, and German Center for Cardiovascular Research (DZHK), partner site Munich, Germany
| | - Patrick Hofmann
- Institute of Cardiovascular Regeneration, University Hospital Frankfurt, and German Center for Cardiovascular Research (DZHK), partner site Rhein-Main, Frankfurt, Germany (P.H., R.A.B.)
| | - Alexandra Bäcklund
- Department of Medicine (H.J., E.C., A. Bäcklund; S.M.E., P.E., L.M.), Karolinska Institutet, Stockholm, Sweden
| | - Suzanne M Eken
- Department of Medicine (H.J., E.C., A. Bäcklund; S.M.E., P.E., L.M.), Karolinska Institutet, Stockholm, Sweden
| | - Joy Roy
- Department of Molecular Medicine and Surgery (J.R.), Karolinska Institutet, Stockholm, Sweden
| | - Per Eriksson
- Department of Medicine (H.J., E.C., A. Bäcklund; S.M.E., P.E., L.M.), Karolinska Institutet, Stockholm, Sweden
| | | | - Deepak Ramanujam
- Institute of Pharmacology and Toxicology (D.R., A.D., S.E.), Technical University Munich, and German Center for Cardiovascular Research (DZHK), partner site Munich, Germany
| | - Anne Dueck
- Institute of Pharmacology and Toxicology (D.R., A.D., S.E.), Technical University Munich, and German Center for Cardiovascular Research (DZHK), partner site Munich, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology (D.R., A.D., S.E.), Technical University Munich, and German Center for Cardiovascular Research (DZHK), partner site Munich, Germany
| | - Reinier A Boon
- Institute of Cardiovascular Regeneration, University Hospital Frankfurt, and German Center for Cardiovascular Research (DZHK), partner site Rhein-Main, Frankfurt, Germany (P.H., R.A.B.)
| | - Hans-Henning Eckstein
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar (D.Y.L., A. Busch, J.P., S.L., H.-H.E., L.M.), Technical University Munich, and German Center for Cardiovascular Research (DZHK), partner site Munich, Germany
| | - Joshua M Spin
- Division of Cardiovascular Medicine, Stanford University, CA (J.M.S., P.S.T.)
| | - Philip S Tsao
- Division of Cardiovascular Medicine, Stanford University, CA (J.M.S., P.S.T.)
| | - Lars Maegdefessel
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar (D.Y.L., A. Busch, J.P., S.L., H.-H.E., L.M.), Technical University Munich, and German Center for Cardiovascular Research (DZHK), partner site Munich, Germany.,Department of Medicine (H.J., E.C., A. Bäcklund; S.M.E., P.E., L.M.), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Searching for the Genetic Determinants of Peripheral Arterial Disease: A Review of the Literature and Future Directions. Cardiol Rev 2019; 27:145-152. [PMID: 30946061 DOI: 10.1097/crd.0000000000000231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Peripheral arterial disease (PAD) is a significant but under-recognized disease that is poorly understood despite population-scale genetic studies. To address this morbid disease, clinicians need additional tools to identify, prevent, and treat patients at risk for PAD. Genetic studies of coronary artery disease have yielded promising results for clinical application, which have thus far been lacking in PAD. In this article, we review recent findings, discuss limitations, and propose future directions of genomic study and clinical application. However, despite many studies, we still lack definitive genetic markers for PAD. This can be attributed to the heterogeneity of PAD's pathogenesis and clinical manifestations, as well as inconsistencies in study methodologies, limitations of current genetic assessment techniques, incompletely comprehended molecular pathophysiology, and confounding generalized atherosclerotic risk factors. The goals of this review are to evaluate the limitations of our current genetic knowledge of PAD and to propose approaches to expedite the identification of valuable markers of PAD.
Collapse
|
10
|
Dzhalilova DS, Kosyreva AM, Diatroptov ME, Ponomarenko EA, Tsvetkov IS, Zolotova NA, Mkhitarov VA, Khochanskiy DN, Makarova OV. Dependence of the severity of the systemic inflammatory response on resistance to hypoxia in male Wistar rats. J Inflamm Res 2019; 12:73-86. [PMID: 30881082 PMCID: PMC6417003 DOI: 10.2147/jir.s194581] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose The aim of the study was to characterize the severity of the systemic inflammatory response induced by lipopolysaccharide (LPS) in animals with different resistance levels to hypoxia. Materials and methods Two to three months old male Wistar rats (220–240 g) were divided according to hypoxia tolerance in a hypobaric chamber. After a month, they were injected intraperitoneally with Escherichia coli LPS at a dose of 1.5 mg/kg. After 3, 6 and 24 hours of LPS injection, we studied the levels of IL-1β, C-reactive protein (CRP) and TGF-β in the serum, the expression of Hif-1α and Nf-kb in the liver, morphological disorders in the lung and ex vivo production of IL-10 by splenic cells activated by ConA. Results In the early periods after the injection of LPS, increase in Nf-kb expression in the liver was observed only in the rats susceptible to hypoxia. After 6 hours of LPS injection, the number of neutrophils in the interalveolar septa of the lungs of rats susceptible to hypoxia was higher than in tolerant rats. This points to the development of more pronounced LPS-induced inflammation in the rats susceptible to hypoxia and is accompanied by increased expression of Hif-1α in the liver after 6 hours of LPS administration, serum IL-1β level after 3 hours and CRP level after 24 hours. The production of the anti-inflammatory cytokine IL-10 by the spleen was significantly decreased after 6 hours of LPS injection only in the animals tolerant to hypoxia. After 24 hours of LPS injection, a significant decrease in serum TGF-β level occurred in the rats tolerant to hypoxia in comparison with the control group, which improved the survival rates of the animals. Conclusion We have demonstrated the differences in the severity of the LPS-induced inflammatory response in male Wistar rats with different resistance levels to hypoxia. Rats susceptible to hypoxia are characterized by a more pronounced inflammatory response induced by LPS.
Collapse
Affiliation(s)
- Dzhuliia Sh Dzhalilova
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution "Science Research Institute of Human Morphology", Moscow, Russia,
| | - Anna M Kosyreva
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution "Science Research Institute of Human Morphology", Moscow, Russia,
| | - Mikhail E Diatroptov
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution "Science Research Institute of Human Morphology", Moscow, Russia,
| | - Elena A Ponomarenko
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution "Science Research Institute of Human Morphology", Moscow, Russia,
| | - Ivan S Tsvetkov
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution "Science Research Institute of Human Morphology", Moscow, Russia,
| | - Natalia A Zolotova
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution "Science Research Institute of Human Morphology", Moscow, Russia,
| | - Vladimir A Mkhitarov
- Department of Informatics and Morphometry, Federal State Budgetary Institution "Science Research Institute of Human Morphology", Moscow, Russia
| | - Dmitry N Khochanskiy
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution "Science Research Institute of Human Morphology", Moscow, Russia,
| | - Olga V Makarova
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution "Science Research Institute of Human Morphology", Moscow, Russia,
| |
Collapse
|
11
|
HIF-1α, NOTCH1, ADAM12, and HB-EGF are overexpressed in mucoepidermoid carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2018; 127:e8-e17. [PMID: 30415904 DOI: 10.1016/j.oooo.2018.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/14/2018] [Accepted: 09/23/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Intratumoral hypoxia (IH) occurs during cellular proliferation of malignant tumors. This phenomenon is characterized by a decrease in oxygen levels in the neoplastic microenvironment. Throughout this condition, the proteins HIF-1α, NOTCH1, ADAM12, and HB-EGF can be activated, triggering signaling pathways associated with tumor invasiveness through invadopodia formation. This study aimed to evaluate the immunostaining of HIF-1α, NOTCH1, ADAM12, and HBEGF in 19 cases of mucoepidermoid carcinoma (MEC) and 10 samples of salivary glands (control group). STUDY DESIGN The immunoperoxidase technique was employed to detect the proteins of interest. The Student t test was used to compare immunoexpression between MEC samples and the control group. RESULTS Protein immunostaining was statistically significantly higher in MEC samples than in the control group (P < .01), and the proteins were especially overexpressed in epidermoid cells of MEC. CONCLUSIONS We suggest that there is an association between the NOTCH1 signaling pathway activated by IH and the biologic behavior of MEC.
Collapse
|
12
|
Wang W, Xu B, Xuan H, Ge Y, Wang Y, Wang L, Huang J, Fu W, Michie SA, Dalman RL. Hypoxia-inducible factor 1 in clinical and experimental aortic aneurysm disease. J Vasc Surg 2017; 68:1538-1550.e2. [PMID: 29242064 DOI: 10.1016/j.jvs.2017.09.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/17/2017] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Mural angiogenesis and macrophage accumulation are two pathologic hallmarks of abdominal aortic aneurysm (AAA) disease. The heterodimeric transcription factor hypoxia-inducible factor 1 (HIF-1) is an essential regulator of angiogenesis and macrophage function. In this study, we investigated HIF-1 expression and activity in clinical and experimental AAA disease. METHODS Human aortic samples were obtained from 24 AAA patients and six organ donors during open abdominal surgery. Experimental AAAs were created in 10-week-old male C57BL/6J mice by transient intra-aortic infusion of porcine pancreatic elastase (PPE). Expression of HIF-1α and its target gene messenger RNA (mRNA) levels were assessed in aneurysmal and control aortae. The HIF-1α inhibitors 2-methoxyestradiol and digoxin, the prolyl hydroxylase domain-containing protein (PHD) inhibitors cobalt chloride and JNJ-42041935, and the vehicle alone as control were administered daily to mice at varying time points beginning before or after PPE infusion. Influences on experimental AAA formation and progression were assessed by serial transabdominal ultrasound measurements of aortic diameter and histopathologic analysis at sacrifice. RESULTS The mRNA levels for HIF-1α, vascular endothelial growth factor A, glucose transporter 1, and matrix metalloproteinase 2 were significantly increased in both human and experimental aneurysm tissue. Tissue immunostaining detected more HIF-1α protein in both human and experimental aneurysmal aortae compared with respective control aortae. Treatment with either HIF-1α inhibitor, beginning before or after PPE infusion, prevented enlargement of experimental aneurysms. Both HIF-1α inhibition regimens attenuated medial elastin degradation, smooth muscle cell depletion, and mural angiogenesis and the accumulation of macrophages, T cells, and B cells. Whereas mRNA levels for PHD1 and PHD2 were elevated in experimental aneurysmal aortae, pharmacologic inhibition of PHDs had limited effect on experimental aneurysm progression. CONCLUSIONS Expression of HIF-1α and its target genes is increased in human and experimental AAAs. Treatment with HIF-1α inhibitors limits experimental AAA progression, with histologic evidence of attenuated mural leukocyte infiltration and angiogenesis. These findings underscore the potential significance of HIF-1α in aneurysm pathogenesis and as a target for pharmacologic suppression of AAA disease.
Collapse
Affiliation(s)
- Wei Wang
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif; Department of Vascular Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Haojun Xuan
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Yingbin Ge
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Wang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, Calif
| | - Lixin Wang
- Department of Vascular Surgery, Fudan University Zhongshan Hospital, Shanghai, China
| | - Jianhua Huang
- Department of Vascular Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Weiguo Fu
- Department of Vascular Surgery, Fudan University Zhongshan Hospital, Shanghai, China
| | - Sara A Michie
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif
| | - Ronald L Dalman
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
13
|
Differentially expressed genes and canonical pathways in the ascending thoracic aortic aneurysm - The Tampere Vascular Study. Sci Rep 2017; 7:12127. [PMID: 28935963 PMCID: PMC5608723 DOI: 10.1038/s41598-017-12421-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022] Open
Abstract
Ascending thoracic aortic aneurysm (ATAA) is a multifactorial disease with a strong inflammatory component. Surgery is often required to prevent aortic rupture and dissection. We performed gene expression analysis (Illumina HumanHT-12 version 3 Expression BeadChip) for 32 samples from ATAA (26 without/6 with dissection), and 28 left internal thoracic arteries (controls) collected in Tampere Vascular study. We compared expression profiles and conducted pathway analysis using Ingenuity Pathway Analysis (IPA) to reveal differences between ATAA and a healthy artery wall. Almost 5000 genes were differentially expressed in ATAA samples compared to controls. The most downregulated gene was homeobox (HOX) A5 (fold change, FC = -25.3) and upregulated cadherin-2 (FC = 12.6). Several other HOX genes were also found downregulated (FCs between -25.3 and -1.5, FDR < 0.05). 43, mostly inflammatory, canonical pathways in ATAA were found to be significantly (p < 0.05, FDR < 0.05) differentially expressed. The results remained essentially the same when the 6 dissected ATAA samples were excluded from the analysis. We show for the first time on genome level that ATAA is an inflammatory process, revealing a more detailed molecular pathway level pathogenesis. We propose HOX genes as potentially important players in maintaining aortic integrity, altered expression of which might be important in the pathobiology of ATAA.
Collapse
|
14
|
Abstract
The anoxemia theory proposes that an imbalance between the demand for and supply of oxygen in the arterial wall is a key factor in the development of atherosclerosis. There is now substantial evidence that there are regions within the atherosclerotic plaque in which profound hypoxia exists; this may fundamentally change the function, metabolism, and responses of many of the cell types found within the developing plaque and whether the plaque will evolve into a stable or unstable phenotype. Hypoxia is characterized in molecular terms by the stabilization of hypoxia-inducible factor (HIF) 1α, a subunit of the heterodimeric nuclear transcriptional factor HIF-1 and a master regulator of oxygen homeostasis. The expression of HIF-1 is localized to perivascular tissues, inflammatory macrophages, and smooth muscle cells adjacent to the necrotic core of atherosclerotic lesions and regulates several genes that are important to vascular function including vascular endothelial growth factor, nitric oxide synthase, endothelin-1, and erythropoietin. This review summarizes the effects of hypoxia on the functions of cells involved in atherogenesis and the evidence for its potential importance from experimental models and clinical studies.
Collapse
Affiliation(s)
- Gordon A A Ferns
- 1 Department of Medical Education, Brighton & Sussex Medical School, Brighton, United Kingdom
| | - Lamia Heikal
- 1 Department of Medical Education, Brighton & Sussex Medical School, Brighton, United Kingdom
| |
Collapse
|
15
|
Bradley DT, Badger SA, McFarland M, Hughes AE. Abdominal Aortic Aneurysm Genetic Associations: Mostly False? A Systematic Review and Meta-analysis. Eur J Vasc Endovasc Surg 2015; 51:64-75. [PMID: 26460285 DOI: 10.1016/j.ejvs.2015.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/07/2015] [Indexed: 01/27/2023]
Abstract
OBJECTIVE/BACKGROUND Many associations between abdominal aortic aneurysm (AAA) and genetic polymorphisms have been reported. It is unclear which are genuine and which may be caused by type 1 errors, biases, and flexible study design. The objectives of the study were to identify associations supported by current evidence and to investigate the effect of study design on reporting associations. METHODS Data sources were MEDLINE, Embase, and Web of Science. Reports were dual-reviewed for relevance and inclusion against predefined criteria (studies of genetic polymorphisms and AAA risk). Study characteristics and data were extracted using an agreed tool and reports assessed for quality. Heterogeneity was assessed using I(2) and fixed- and random-effects meta-analyses were conducted for variants that were reported at least twice, if any had reported an association. Strength of evidence was assessed using a standard guideline. RESULTS Searches identified 467 unique articles, of which 97 were included. Of 97 studies, 63 reported at least one association. Of 92 studies that conducted multiple tests, only 27% corrected their analyses. In total, 263 genes were investigated, and associations were reported in polymorphisms in 87 genes. Associations in CDKN2BAS, SORT1, LRP1, IL6R, MMP3, AGTR1, ACE, and APOA1 were supported by meta-analyses. CONCLUSION Uncorrected multiple testing and flexible study design (particularly testing many inheritance models and subgroups, and failure to check for Hardy-Weinberg equilibrium) contributed to apparently false associations being reported. Heterogeneity, possibly due to the case mix, geographical, temporal, and environmental variation between different studies, was evident. Polymorphisms in nine genes had strong or moderate support on the basis of the literature at this time. Suggestions are made for improving AAA genetics study design and conduct.
Collapse
Affiliation(s)
- D T Bradley
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Institute of Clinical Sciences, Block B, Royal Victoria Hospital, Belfast BT12 6BA, UK.
| | - S A Badger
- Mater Misericordiae University Hospital, Eccles Street, Dublin, Ireland
| | - M McFarland
- Department of Pathology, Institute of Pathology Building, Royal Victoria Hospital, Belfast Health and Social Care Trust, Grosvenor Road, Belfast BT12 6BL, UK
| | - A E Hughes
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Institute of Clinical Sciences, Block B, Royal Victoria Hospital, Belfast BT12 6BA, UK
| |
Collapse
|
16
|
Kim YR, Hong SH. Association between the polymorphisms of the vascular endothelial growth factor gene and metabolic syndrome. Biomed Rep 2015; 3:319-326. [PMID: 26137230 DOI: 10.3892/br.2015.423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/27/2015] [Indexed: 01/12/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is a major angiogenic factor. Increased levels of VEGF have been reported in patients with metabolic syndrome (MetS). The role of VEGF polymorphisms in MetS susceptibility, however, has not been reported previously. Thus, the present study was performed to analyze the associations between the VEGF -634G>C and 936C>T polymorphisms and the patients with MetS. A total of 320 patients with MetS (mean age, 49.86±11.76 years) and 320 healthy subjects (mean age, 50.94±8.43 years) were enrolled in the study. The VEGF -634G>C polymorphism in the 5'-untranslated region (UTR) and 936C>T polymorphism in 3'-UTR were analyzed by polymerase chain reaction-restriction fragment length polymorphism. The VEGF -634G>C polymorphism significantly affected MetS susceptibility. The CC genotype of the -634G>C polymorphism was significantly associated with an increased risk of MetS [adjusted odds ratio (AOR)=3.973; 95% confidence interval (CI), 2.321-6.799; P<0.0001]. AORs of the dominant (GG vs. GC+CC) and recessive models (GG+GC vs. CC) between the cases and controls were 2.569 (95% CI, 1.657-3.983; P<0.0001) and 2.163 (95% CI, 1.475-3.171; P=0.0001), respectively. Haplotypes of -634G>C and 936C>T were also associated with MetS susceptibility. When the haplotype data were stratified by gender, the association remained only in males. The -634G>C polymorphism was also associated with the subgroups of MetS risk components by the stratification analysis. The 936C>T polymorphism was, however, not associated with the MetS susceptibility. The present study demonstrates that the VEGF -634G>C polymorphism and haplotypes may be a genetic determinant for the MetS susceptibility. To the best of our knowledge, this is the first study on the significant association of the VEGF polymorphisms in MetS patients. To confirm the effects of the VEGF polymorphisms on MetS, further functional and population studies are required.
Collapse
Affiliation(s)
- Young Ree Kim
- Department of Laboratory Medicine, School of Medicine, Jeju National University, Jeju 690-756, Republic of Korea
| | - Seung-Ho Hong
- Department of Science Education, Teachers College, Jeju National University, Jeju 690-781, Republic of Korea
| |
Collapse
|
17
|
Hashimoto T, Shibasaki F. Hypoxia-inducible factor as an angiogenic master switch. Front Pediatr 2015; 3:33. [PMID: 25964891 PMCID: PMC4408850 DOI: 10.3389/fped.2015.00033] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/07/2015] [Indexed: 12/19/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) regulate the transcription of genes that mediate the response to hypoxia. HIFs are constantly expressed and degraded under normoxia, but stabilized under hypoxia. HIFs have been widely studied in physiological and pathological conditions and have been shown to contribute to the pathogenesis of various vascular diseases. In clinical settings, the HIF pathway has been studied for its role in inhibiting carcinogenesis. HIFs might also play a protective role in the pathology of ischemic diseases. Clinical trials of therapeutic angiogenesis after the administration of a single growth factor have yielded unsatisfactory or controversial results, possibly because the coordinated activity of different HIF-induced factors is necessary to induce mature vessel formation. Thus, manipulation of HIF activity to simultaneously induce a spectrum of angiogenic factors offers a superior strategy for therapeutic angiogenesis. Because HIF-2α plays an essential role in vascular remodeling, manipulation of HIF-2α is a promising approach to the treatment of ischemic diseases caused by arterial obstruction, where insufficient development of collateral vessels impedes effective therapy. Eukaryotic initiation factor 3 subunit e (eIF3e)/INT6 interacts specifically with HIF-2α and induces the proteasome inhibitor-sensitive degradation of HIF-2α, independent of hypoxia and von Hippel-Lindau protein. Treatment with eIF3e/INT6 siRNA stabilizes HIF-2α activity even under normoxic conditions and induces the expression of several angiogenic factors, at levels sufficient to produce functional arteries and veins in vivo. We have demonstrated that administration of eIF3e/INT6 siRNA to ischemic limbs or cold-injured brains reduces ischemic damage in animal models. This review summarizes the current understanding of the relationship between HIFs and vascular diseases. We also discuss novel oxygen-independent regulatory proteins that bind HIF-α and the implications of a new method for therapeutic angiogenesis using HIF stabilizers.
Collapse
Affiliation(s)
- Takuya Hashimoto
- Department of Surgery, Yale University School of Medicine , New Haven, CT , USA ; Division of Vascular Surgery, Department of Surgery, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| | - Futoshi Shibasaki
- Department of Molecular Medical Research, Tokyo Metropolitan Institute of Medical Science , Tokyo , Japan
| |
Collapse
|
18
|
Strauss E, Oszkinis G, Staniszewski R. SEPP1 gene variants and abdominal aortic aneurysm: gene association in relation to metabolic risk factors and peripheral arterial disease coexistence. Sci Rep 2014; 4:7061. [PMID: 25395084 PMCID: PMC4231327 DOI: 10.1038/srep07061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/29/2014] [Indexed: 11/09/2022] Open
Abstract
An inadequate selenium level is supposed to be a risk factor for cardiovascular diseases. However little is known about variation of the genes encoding selenium-containing proteins that would confirm the causality in these diseases. The aim of this study was to analyze the relationships between two functional variants of selenoprotein P gene (SEPP1 rs3877899G>A, rs7579G>A) and the occurrence of abdominal aortic aneurysm (AAA) and aortoiliac occlusive disease (AIOD), as well as their metabolic risk factors. In AAA, the rs3877899A allele was associated with higher systolic blood (P < .003) and pulse pressure (P < .003) values (recessive model), and with coexistence of peripheral arterial disease (PAD; carriers: P = .033). The other SEPP1 variants were associated with BMI values and influenced the risk of aortic diseases, depending on body weight. The strongest associations in the case-control analysis was found between the presence of the rs3877899G-rs7579G haplotype and development of AAA in overweight and obese subjects (OR = 1.80, 95%CI = 1.16-2.79, P = .008). The higher BMI values were correlated with lower age of AAA patients and larger size of aneurysm. Our results suggests the potential role of the selenoprotein P in pathogenesis of AAA. Future studies should consider the role of the rs3877899G-rs7579G haplotype as a risk factor for aggressive-growing AAAs.
Collapse
Affiliation(s)
- Ewa Strauss
- 1] Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland [2] Department of General and Vascular Surgery, Poznan University of Medical Sciences, Dluga 1/2, 61-848 Poznan, Poland
| | - Grzegorz Oszkinis
- Department of General and Vascular Surgery, Poznan University of Medical Sciences, Dluga 1/2, 61-848 Poznan, Poland
| | - Ryszard Staniszewski
- Department of General and Vascular Surgery, Poznan University of Medical Sciences, Dluga 1/2, 61-848 Poznan, Poland
| |
Collapse
|