1
|
Dinc R. A review of the current state in neointimal hyperplasia development following endovascular intervention and minor emphasis on new horizons in immunotherapy. Transl Clin Pharmacol 2023; 31:191-201. [PMID: 38196998 PMCID: PMC10772059 DOI: 10.12793/tcp.2023.31.e18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 01/11/2024] Open
Abstract
Endovascular strategies play a vital role in the treatment of peripheral arterial disease (PAD). However, luminal loss or restenosis after endovascular intervention remains a significant challenge. The main underlying mechanisms are negative vascular remodeling and elastic recoil in balloon angioplasty. During stenting, the main reason for this complex is neointimal proliferation. Endothelial cell injury due to endovascular intervention initiates a series of molecular events, such as overexpression of growth factors, cytokine secretion, and adhesion molecules. These induce platelet activation and inflammatory processes, which trigger the proliferation and migration of vascular smooth muscle cells into the intima, resulting in neointimal hyperplasia. During this process, PAD progression is mainly caused by chronic inflammation, in which macrophages play a central role. Of the current strategies, drug release interventions aim to suppress restenosis using antiproliferative drugs, such as sirolimus and paclitaxel, during drug release. These drugs inhibit vascular reendothelialization and reduce late in-stent restenosis. For this reason, immunotherapy can be considered an important alternative. Interventions that polarize macrophages to the M2 subtype are particularly important, as they shape the immune response in an anti-inflammatory direction and contribute to tissue repair. However, there are several challenges to overcome, such as localizing antiproliferative or polarizing agents only to areas of vascular injury. This review discusses, based on the early study observations, immunotherapeutic approaches to prevent restenosis after endovascular intervention for the treatment of PAD.
Collapse
Affiliation(s)
- Rasit Dinc
- INVAMED Medical Innovation Institute, Ankara 06810, Turkey
| |
Collapse
|
2
|
Sobolevskaya EV, Shumkov OA, Smagin MA, Guskov AE, Malysheva AV, Atuchin VV, Nimaev VV. Markers of Restenosis after Percutaneous Transluminal Balloon Angioplasty in Patients with Critical Limb Ischemia. Int J Mol Sci 2023; 24:ijms24109096. [PMID: 37240440 DOI: 10.3390/ijms24109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/14/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Among cardiovascular diseases, chronic obliterating lesions of the arteries of lower extremities, which are one of the important problems of modern healthcare, are distinguished. In most cases, the cause of damage to the arteries of lower extremities is atherosclerosis. The most severe form is chronic ischemia, characterized by pain at rest and ischemic ulcers, ultimately increasing the risk of limb loss and cardiovascular mortality. Therefore, patients with critical limb ischemia need limb revascularization. Percutaneous transluminal balloon angioplasty is one of the least invasive and safe approaches, with advantages for patients with comorbidities. However, after this procedure, restenosis is still possible. Early detection of changes in the composition of some molecules as markers of restenosis will help screen patients at the risk of restenosis, as well as find ways to apply efforts for further directions of inhibition of this process. The purpose of this review is to provide the most important and up-to-date information on the mechanisms of restenosis development, as well as possible predictors of their occurrence. The information collected in this publication may be useful in predicting outcomes after surgical treatment and will also find new ways for the target implication to the mechanisms of development of restenosis and atherosclerosis.
Collapse
Affiliation(s)
- Elvira V Sobolevskaya
- Laboratory of Surgical Lymphology and Lymph-Detoxication, Research Institute of Clinical and Experimental Lymphology-Branch of the Institute of Cytology and Genetics, SB RAS, Novosibirsk 630117, Russia
| | - Oleg A Shumkov
- Laboratory of Surgical Lymphology and Lymph-Detoxication, Research Institute of Clinical and Experimental Lymphology-Branch of the Institute of Cytology and Genetics, SB RAS, Novosibirsk 630117, Russia
| | - Mikhail A Smagin
- Laboratory of Surgical Lymphology and Lymph-Detoxication, Research Institute of Clinical and Experimental Lymphology-Branch of the Institute of Cytology and Genetics, SB RAS, Novosibirsk 630117, Russia
| | - Andrey E Guskov
- Laboratory of Scientometrics and Scientific Communications, Russian Research Institute of Economics, Politics and Law in Science and Technology, Moscow 127254, Russia
| | - Alexandra V Malysheva
- Laboratory of Scientometrics and Scientific Communications, Russian Research Institute of Economics, Politics and Law in Science and Technology, Moscow 127254, Russia
| | - Victor V Atuchin
- Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090, Russia
- Research and Development Department, Kemerovo State University, Kemerovo 650000, Russia
- Department of Industrial Machinery Design, Novosibirsk State Technical University, Novosibirsk 630073, Russia
- R&D Center "Advanced Electronic Technologies", Tomsk State University, Tomsk 634034, Russia
| | - Vadim V Nimaev
- Laboratory of Surgical Lymphology and Lymph-Detoxication, Research Institute of Clinical and Experimental Lymphology-Branch of the Institute of Cytology and Genetics, SB RAS, Novosibirsk 630117, Russia
| |
Collapse
|
3
|
Campos CP, Ribeiro MS, Rocha LA, Dellalibera-Joviliano R, Piccinato CE, Oda JMM, Joviliano EE. Carbon-Coated Stent and the Role of the Kallikrein-Kinin System in Peripheral Angioplasty. J Vasc Res 2020; 57:97-105. [PMID: 31896109 DOI: 10.1159/000504849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/18/2019] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE The purpose of this study was to investigate the clinical evolution of patients treated with carbon-coated stent, as well as its patency and the inflammatory response triggered by this process through the quantification of serum elements of the kallikrein-kinin system (KKS). METHODS This was a single-center prospective study with 27 patients with peripheral artery disease (PAD) who required percutaneous transluminal angioplasty and stenting of the iliacofemoropopliteal segment using carbon-coated stent grafts (carbostents). The blood concentrations of the total and kininogen fractions were evaluated using immunoenzymatic methods. Plasma kallikrein levels were assessed by the colorimetric method and tissue kallikrein levels were evaluated by the spectrophotometric method. The activity of kininase II was measured by -fluorometric analysis. RESULTS Of the 27 patients who completed the 6 months of the study (11 iliac territory, 16 femoropopliteal territory), only one experienced restenosis (3.7%) (femoropopliteal segment) and no patient had occlusion (96.3% of patency). In 1 year, four patients were lost to follow-up and all 23 patients evaluated maintained stent patency, except for the patient who had restenosis throughout the first 6 months. We report complete (100%) member salvage in 12 months of follow-up. The activity levels of high- and low-molecular-weight kininogens decreased significantly over time (before vs. 24 h, p < 0.01; before vs. 6 months, p < 0.001, and before vs. 24 h, p < 0.01; before vs. 6 months, p < 0.001; 24 h vs. 6 months, p < 0.001, respectively). Patients also had significantly lower levels of plasma and tissue kallikrein (before vs. 24 h, p < 0.001; before vs. 6 months, p < 0.001, and before vs. 24 h, p < 0.01; before vs. 6 months, p < 0.05, respectively). There was a significant increase in the enzymatic activity of kininase II at 24 h and after 6 months compared to the pre-treatment control (p < 0.001). CONCLUSION Our early experience shows that the use of carbon-coated stents in PAD appears to be safe, with low rates of early restenosis (3.7% in the first 6 months and 5% in the 12 months of follow-up). We concluded that KKS was involved in the inflammatory response caused by the placement of carbon-coated stents.
Collapse
Affiliation(s)
- César Presto Campos
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil.,Federal University of Mato Grosso do Sul, Três Lagoas, Brazil
| | - Maurício Serra Ribeiro
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Laura Andrade Rocha
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil.,Universidade Federal de Uberlandia, Department of Surgery, Uberlandia, Brazil
| | | | - Carlos Eli Piccinato
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Edwaldo Edner Joviliano
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil,
| |
Collapse
|
4
|
Guimaraes TS, da Rocha LA, Becari C, Piccinato CE, Joviliano RD, Ribeiro MS, Joviliano EE. The Role of Interleukins and Inflammatory Markers in the Early Restenosis of Covered Stents in the Femoropopliteal Arterial Segment. Ann Vasc Surg 2018; 50:88-95. [PMID: 29481941 DOI: 10.1016/j.avsg.2017.11.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/22/2017] [Accepted: 11/26/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND The objective of this study was to evaluate the relationship between inflammatory markers, such as interleukin (IL)-1β, IL-6, IL-8, IL-10, tumor necrosis factor α (TNF-α), transforming growth factor β (TGF-β), and highly sensitive C-reactive protein, and the development of arterial restenosis 6 months after femoropopliteal percutaneous transluminal angioplasty (PTA) with covered stent implantation. METHODS We recruited 27 patients of a tertiary hospital in Brazil who were treated with covered stents for atherosclerotic peripheral arterial disease. Serum samples were collected before stent implantation, then 24 hr later, and 6 months after the procedure. RESULTS At 6-month follow-up, 4 patients (15%) presented restenosis. IL1- β, IL-6, IL-8, and TNF-α levels showed a statistically significant reduction after both 24 hr and 6 months compared with pretreatment levels (P < 0.01). There were increased levels of IL-10 and TGF-β both 24 hr and 6 months after PTA and stenting compared with pretreatment levels (P < 0.01). None of the cytokines studied were correlated with restenosis. CONCLUSIONS This study demonstrated a significant increase in anti-inflammatory TGF-β and IL-10 and a decrease in proinflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α 6 months after the procedure, but no inflammatory marker was independently identified as a risk factor for in-stent restenosis.
Collapse
Affiliation(s)
- Thiago Silva Guimaraes
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Laura Andrade da Rocha
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Universidade Federal de Uberlandia, Department of Surgery, Uberlandia, Minas Gerais, Brazil.
| | - Christiane Becari
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos Eli Piccinato
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Renata Dellalibera Joviliano
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mauricio Serra Ribeiro
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Edwaldo Edner Joviliano
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|