1
|
Hurcombe JA, Barrington F, Marchetti M, Betin VM, Bowen EE, Lay AC, Ni L, Dayalan L, Pope RJ, Brinkkoetter PT, Holzenberger M, Welsh GI, Coward RJ. Contrasting consequences of podocyte insulin-like growth factor 1 receptor inhibition. iScience 2024; 27:109749. [PMID: 38706850 PMCID: PMC11068853 DOI: 10.1016/j.isci.2024.109749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/12/2023] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
Insulin signaling to the glomerular podocyte via the insulin receptor (IR) is critical for kidney function. In this study we show that near-complete knockout of the closely related insulin-like growth factor 1 receptor (IGF1R) in podocytes is detrimental, resulting in albuminuria in vivo and podocyte cell death in vitro. In contrast, partial podocyte IGF1R knockdown confers protection against doxorubicin-induced podocyte injury. Proteomic analysis of cultured podocytes revealed that while near-complete loss of podocyte IGF1R results in the downregulation of mitochondrial respiratory complex I and DNA damage repair proteins, partial IGF1R inhibition promotes respiratory complex expression. This suggests that altered mitochondrial function and resistance to podocyte stress depends on the level of IGF1R suppression, the latter determining whether receptor inhibition is protective or detrimental. Our work suggests that the partial suppression of podocyte IGF1R could have therapeutic benefits in treating albuminuric kidney disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lan Ni
- Bristol Renal, University of Bristol, Bristol, UK
| | | | | | - Paul T. Brinkkoetter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | | | | |
Collapse
|
2
|
Schömig T, Diefenhardt P, Plagmann I, Trinsch B, Merz T, Crispatzu G, Unnersjö-Jess D, Nies J, Pütz D, Sierra Gonzalez C, Schermer B, Benzing T, Brinkkoetter PT, Brähler S. The podocytes' inflammatory responses in experimental GN are independent of canonical MYD88-dependent toll-like receptor signaling. Sci Rep 2024; 14:2292. [PMID: 38280906 PMCID: PMC10821883 DOI: 10.1038/s41598-024-52565-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/20/2024] [Indexed: 01/29/2024] Open
Abstract
Podocytes form the kidney filtration barrier and continuously adjust to external stimuli to preserve their integrity even in the presence of inflammation. It was suggested that canonical toll-like receptor signaling, mediated by the adaptor protein MYD88, plays a crucial role in initiating inflammatory responses in glomerulonephritis (GN). We explored the influence of podocyte-intrinsic MYD88 by challenging wild-type (WT) and podocyte-specific Myd88 knockout (MyD88pko) mice, with a model of experimental GN (nephrotoxic nephritis, NTN). Next-generation sequencing revealed a robust upregulation of inflammatory pathways and changes in cytoskeletal and cell adhesion proteins in sorted podocytes from WT mice during disease. Unchallenged MyD88pko mice were healthy and showed no proteinuria, normal kidney function and lacked morphological changes. During NTN, MyD88pko exhibited a transient increase in proteinuria in comparison to littermates, while histological damage, podocyte ultrastructure in STED imaging and frequencies of infiltrating immune cells by flow cytometry were unchanged. MYD88-deficiency led to subtle changes in the podocyte transcriptome, without a significant impact on the overall podocyte response to inflammation, presumably through MYD88-independent signaling pathways. In conclusion, our study reveals a comprehensive analysis of podocyte adaptation to an inflammatory environment on the transcriptome level, while MYD88-deficiency had only limited impact on the course of GN suggesting additional signaling through MYD88-independent signaling.
Collapse
Affiliation(s)
- Thomas Schömig
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Paul Diefenhardt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Ingo Plagmann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Bastian Trinsch
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Tim Merz
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Giuliano Crispatzu
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David Unnersjö-Jess
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Jasper Nies
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - David Pütz
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Claudio Sierra Gonzalez
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Paul Thomas Brinkkoetter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany.
| | - Sebastian Brähler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
3
|
The Atypical Cyclin-Dependent Kinase 5 (Cdk5) Guards Podocytes from Apoptosis in Glomerular Disease While Being Dispensable for Podocyte Development. Cells 2021; 10:cells10092464. [PMID: 34572114 PMCID: PMC8470701 DOI: 10.3390/cells10092464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/03/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is expressed in terminally differentiated cells, where it drives development, morphogenesis, and survival. Temporal and spatial kinase activity is regulated by specific activators of Cdk5, dependent on the cell type and environmental factors. In the kidney, Cdk5 is exclusively expressed in terminally differentiated glomerular epithelial cells called podocytes. In glomerular disease, signaling mechanisms via Cdk5 have been addressed by single or combined conventional knockout of known specific activators of Cdk5. A protective, anti-apoptotic role has been ascribed to Cdk5 but not a developmental phenotype, as in terminally differentiated neurons. The effector kinase itself has never been addressed in animal models of glomerular disease. In the present study, conditional and inducible knockout models of Cdk5 were analyzed to investigate the role of Cdk5 in podocyte development and glomerular disease. While mice with podocyte-specific knockout of Cdk5 had no developmental defects and regular lifespan, loss of Cdk5 in podocytes increased susceptibility to glomerular damage in the nephrotoxic nephritis model. Glomerular damage was associated with reduced anti-apoptotic signals in Cdk5-deficient mice. In summary, Cdk5 acts primarily as master regulator of podocyte survival during glomerular disease and—in contrast to neurons—does not impact on glomerular development or maintenance.
Collapse
|
4
|
Hatje FA, Wedekind U, Sachs W, Loreth D, Reichelt J, Demir F, Kosub C, Heintz L, Tomas NM, Huber TB, Skuza S, Sachs M, Zielinski S, Rinschen MM, Meyer-Schwesinger C. Tripartite Separation of Glomerular Cell Types and Proteomes from Reporter-Free Mice. J Am Soc Nephrol 2021; 32:2175-2193. [PMID: 34074698 PMCID: PMC8729851 DOI: 10.1681/asn.2020091346] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 04/09/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The glomerulus comprises podocytes, mesangial cells, and endothelial cells, which jointly determine glomerular filtration. Understanding this intricate functional unit beyond the transcriptome requires bulk isolation of these cell types for biochemical investigations. We developed a globally applicable tripartite isolation method for murine mesangial and endothelial cells and podocytes (timMEP). METHODS We separated glomerular cell types from wild-type or mT/mG mice via a novel FACS approach, and validated their purity. Cell type proteomes were compared between strains, ages, and sex. We applied timMEP to the podocyte-targeting, immunologic, THSD7A-associated, model of membranous nephropathy. RESULTS timMEP enabled protein-biochemical analyses of podocytes, mesangial cells, and endothelial cells derived from reporter-free mice, and allowed for the characterization of podocyte, endothelial, and mesangial proteomes of individual mice. We identified marker proteins for mesangial and endothelial proteins, and outlined protein-based, potential communication networks and phosphorylation patterns. The analysis detected cell type-specific proteome differences between mouse strains and alterations depending on sex, age, and transgene. After exposure to anti-THSD7A antibodies, timMEP resolved a fine-tuned initial stress response, chiefly in podocytes, that could not be detected by bulk glomerular analyses. The combination of proteomics with super-resolution imaging revealed a specific loss of slit diaphragm, but not of other foot process proteins, unraveling a protein-based mechanism of podocyte injury in this animal model. CONCLUSION timMEP enables glomerular cell type-resolved investigations at the transcriptional and protein-biochemical level in health and disease, while avoiding reporter-based artifacts, paving the way toward the comprehensive and systematic characterization of glomerular cell biology.
Collapse
Affiliation(s)
- Favian A. Hatje
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Uta Wedekind
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wiebke Sachs
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Desiree Loreth
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Reichelt
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fatih Demir
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Christopher Kosub
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Heintz
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola M. Tomas
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B. Huber
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sinah Skuza
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlies Sachs
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Zielinski
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus M. Rinschen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Catherine Meyer-Schwesinger
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Maier JI, Rogg M, Helmstädter M, Sammarco A, Walz G, Werner M, Schell C. A Novel Model for Nephrotic Syndrome Reveals Associated Dysbiosis of the Gut Microbiome and Extramedullary Hematopoiesis. Cells 2021; 10:cells10061509. [PMID: 34203913 PMCID: PMC8232754 DOI: 10.3390/cells10061509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Glomerular kidney disease causing nephrotic syndrome is a complex systemic disorder and is associated with significant morbidity in affected patient populations. Despite its clinical relevance, well-established models are largely missing to further elucidate the implications of uncontrolled urinary protein loss. To overcome this limitation, we generated a novel, inducible, podocyte-specific transgenic mouse model (Epb41l5fl/fl*Nphs1-rtTA-3G*tetOCre), developing nephrotic syndrome in adult mice. Animals were comprehensively characterized, including microbiome analysis and multiplexed immunofluorescence imaging. Induced knockout mice developed a phenotype consistent with focal segmental glomerular sclerosis (FSGS). Although these mice showed hallmark features of severe nephrotic syndrome (including proteinuria, hypoalbuminemia and dyslipidemia), they did not exhibit overt chronic kidney disease (CKD) phenotypes. Analysis of the gut microbiome demonstrated distinct dysbiosis and highly significant enrichment of the Alistipes genus. Moreover, Epb41l5-deficient mice developed marked organ pathologies, including extramedullary hematopoiesis of the spleen. Multiplex immunofluorescence imaging demonstrated red pulp macrophage proliferation and mTOR activation as driving factors of hematopoietic niche expansion. Thus, this novel mouse model for adult-onset nephrotic syndrome reveals the significant impact of proteinuria on extra-renal manifestations, demonstrating the versatility of this model for nephrotic syndrome-related research.
Collapse
Affiliation(s)
- Jasmin I. Maier
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (J.I.M.); (M.R.); (A.S.); (M.W.)
| | - Manuel Rogg
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (J.I.M.); (M.R.); (A.S.); (M.W.)
| | - Martin Helmstädter
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (M.H.); (G.W.)
| | - Alena Sammarco
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (J.I.M.); (M.R.); (A.S.); (M.W.)
| | - Gerd Walz
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (M.H.); (G.W.)
| | - Martin Werner
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (J.I.M.); (M.R.); (A.S.); (M.W.)
| | - Christoph Schell
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (J.I.M.); (M.R.); (A.S.); (M.W.)
- Correspondence:
| |
Collapse
|
6
|
Hasan ASH, Dinh TTH, Le HT, Mizuno-Iijima S, Daitoku Y, Ishida M, Tanimoto Y, Kato K, Yoshiki A, Murata K, Mizuno S, Sugiyama F. Characterization of a bicistronic knock-in reporter mouse model for investigating the role of CABLES2 in vivo. Exp Anim 2021; 70:22-30. [PMID: 32779618 PMCID: PMC7887623 DOI: 10.1538/expanim.20-0063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/05/2020] [Indexed: 12/16/2022] Open
Abstract
Two members of the CDK5 and ABL enzyme substrate (CABLES) family, CABLES1 and CABLES2, share a highly homologous C-terminus. They interact and associate with cyclin-dependent kinase 3 (CDK3), CDK5, and c-ABL. CABLES1 mediates tumor suppression, regulates cell proliferation, and prevents protein degradation. Although Cables2 is ubiquitously expressed in adult mouse tissues at RNA level, the role of CABLES2 in vivo remains unknown. Here, we generated bicistronic Cables2 knock-in reporter mice that expressed CABLES2 tagged with 3×FLAG and 2A-mediated fluorescent reporter tdTomato. Cables2-3×FLAG-2A-tdTomato (Cables2Tom) mice confirmed the expression of Cables2 in various mouse tissues. Interestingly, high intensity of tdTomato fluorescence was observed in the brain, testis and ovary, especially in the corpus luteum. Furthermore, immunoprecipitation analysis using the brain and testis in Cables2Tom/Tom revealed interaction of CABLES2 with CDK5. Collectively, our new Cables2 knock-in reporter model will enable the comprehensive analysis of in vivo CABLES2 function.
Collapse
Affiliation(s)
- Ammar Shaker Hamed Hasan
- Laboratory Animal Resource Center, Trans-Border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Doctor's Program in Biomedical Sciences, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Ministry of Works, Municipalities Affairs and Urban Planning, Building 86, Block 318, Sheikh Hamad Street 1802, Manama Diplomatic Area, Manama, Bahrain
| | - Tra Thi Huong Dinh
- Laboratory Animal Resource Center, Trans-Border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hoai Thu Le
- Laboratory Animal Resource Center, Trans-Border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors (SIGMA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Saori Mizuno-Iijima
- Experimental Animal Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Yoko Daitoku
- Laboratory Animal Resource Center, Trans-Border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Miyuki Ishida
- Laboratory Animal Resource Center, Trans-Border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoko Tanimoto
- Laboratory Animal Resource Center, Trans-Border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Kanako Kato
- Laboratory Animal Resource Center, Trans-Border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Kazuya Murata
- Laboratory Animal Resource Center, Trans-Border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Trans-Border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, Trans-Border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
7
|
CaMKII/calpain interaction mediates ischemia/reperfusion injury in isolated rat hearts. Cell Death Dis 2020; 11:388. [PMID: 32439852 PMCID: PMC7242471 DOI: 10.1038/s41419-020-2605-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 01/05/2023]
Abstract
Previous studies indicated that Ca2+/calmodulin-dependent kinase II (CaMKII), a kinase involved in the modulation of ryanodine receptor activity, activates Ca2+-regulated protease μ-calpain to promote myocardial ischemia/reperfusion injury. This study was performed to explore the underlying mechanisms in CaMKII-induced calpain activation to better understand heart injury. To examine the Ca2+ paradox and ischemia/reperfusion injury, isolated rat hearts were subjected to a Ca2+-free solution for 3 min, or left coronary artery occlusion for 40 min, prior to restoration of normal perfusion. Blockade of trans-sarcoplasmic reticulum Ca2+ flux using ryanodine and thapsigargin failed to prevent Ca2+ paradox-induced heart injury. In contrast, the Ca2+ paradox increased CaMKII auto-phosphorylation at Thr287, while the CaMKII inhibitor KN-62 and the Na+/Ca2+ exchanger inhibitor KB-R7943 alleviated heart injury and calpain activity. Intriguingly, the binding of μ-calpain large subunit calpain-1 (CAPN1) to phospho-CaMKII was blunted by both inhibitors. Thus, a Ca2+ leak via the ryanodine receptor is not an essential element in CaMKII-elicited calpain activation. In hearts receiving vector injection, ischemia/reperfusion caused elevated calpain activity and α-fodrin degradation, along with membrane integrity damage, similar to the effects noted in control hearts. Importantly, all these alterations were diminished with delivery of adeno-associated virus expressing mutant CaMKIIδC T287A. Ischemia/reperfusion increased CaMKII auto-phosphorylation and binding of CAPN1 to phospho-CaMKII, and facilitated the translocation of phospho-CaMKII and CAPN1 to the plasma membrane, all of which were reversed by injecting CaMKII mutant. Furthermore, the relocation capacity and the interaction of CaMKII with CAPN1 appeared to be dependent upon CaMKII autophosphorylation, as its mutant delivery increased the level of CaMKII, but did not increase membrane content of CaMKII and CAPN1, or their interactions. Together, CaMKII/calpain interaction represents a new avenue for mediating myocardial ischemia/reperfusion injury, and CaMKII likely serves as both a kinase and a carrier, thereby promoting calpain membrane translocation and activation.
Collapse
|
8
|
Koehler S, Kuczkowski A, Kuehne L, Jüngst C, Hoehne M, Grahammer F, Eddy S, Kretzler M, Beck BB, Höhfeld J, Schermer B, Benzing T, Brinkkoetter PT, Rinschen MM. Proteome Analysis of Isolated Podocytes Reveals Stress Responses in Glomerular Sclerosis. J Am Soc Nephrol 2020; 31:544-559. [PMID: 32047005 DOI: 10.1681/asn.2019030312] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Understanding podocyte-specific responses to injury at a systems level is difficult because injury leads to podocyte loss or an increase of extracellular matrix, altering glomerular cellular composition. Finding a window into early podocyte injury might help identify molecular pathways involved in the podocyte stress response. METHODS We developed an approach to apply proteome analysis to very small samples of purified podocyte fractions. To examine podocytes in early disease states in FSGS mouse models, we used podocyte fractions isolated from individual mice after chemical induction of glomerular disease (with Doxorubicin or LPS). We also applied single-glomerular proteome analysis to tissue from patients with FSGS. RESULTS Transcriptome and proteome analysis of glomeruli from patients with FSGS revealed an underrepresentation of podocyte-specific genes and proteins in late-stage disease. Proteome analysis of purified podocyte fractions from FSGS mouse models showed an early stress response that includes perturbations of metabolic, mechanical, and proteostasis proteins. Additional analysis revealed a high correlation between the amount of proteinuria and expression levels of the mechanosensor protein Filamin-B. Increased expression of Filamin-B in podocytes in biopsy samples from patients with FSGS, in single glomeruli from proteinuric rats, and in podocytes undergoing mechanical stress suggests that this protein has a role in detrimental stress responses. In Drosophila, nephrocytes with reduced filamin homolog Cher displayed altered filtration capacity, but exhibited no change in slit diaphragm structure. CONCLUSIONS We identified conserved mechanisms of the podocyte stress response through ultrasensitive proteome analysis of human glomerular FSGS tissue and purified native mouse podocytes during early disease stages. This approach enables systematic comparisons of large-scale proteomics data and phenotype-to-protein correlation.
Collapse
Affiliation(s)
- Sybille Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Biomedical Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Alexander Kuczkowski
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Lucas Kuehne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christian Jüngst
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Martin Hoehne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Florian Grahammer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Eppendorf, Hamburg, Germany
| | - Sean Eddy
- Division of Nephrology, Department of Internal Medicine, and
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, and.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Bodo B Beck
- Department of Human Genetics, University Hospital Cologne, Cologne, Germany
| | - Jörg Höhfeld
- Cell Biology, University of Bonn, Bonn, Germany; and
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Paul T Brinkkoetter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany;
| | - Markus M Rinschen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
9
|
Hurcombe JA, Lay AC, Ni L, Barrington AF, Woodgett JR, Quaggin SE, Welsh GI, Coward RJ. Podocyte GSK3α is important for autophagy and its loss detrimental for glomerular function. FASEB Bioadv 2019; 1:498-510. [PMID: 31825015 PMCID: PMC6902909 DOI: 10.1096/fba.2019-00011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Podocytes are key cells in maintaining the integrity of the glomerular filtration barrier and preventing albuminuria. Glycogen synthase kinase 3 (GSK3) is a multi-functional serine/threonine kinase existing as two distinct but related isoforms (α and β). In the podocyte it has previously been reported that inhibition of the β isoform is beneficial in attenuating a variety of glomerular disease models but loss of both isoforms is catastrophic. However, it is not known what the role of GSK3α is in these cells. We now show that GSK3α is present and dynamically modulated in podocytes. When GSK3α is transgenically knocked down specifically in the podocytes of mice it causes mild but significant albuminuria by 6-weeks of life. Its loss also does not protect in models of diabetic or Adriamycin-induced nephropathy. In vitro deletion of podocyte GSK3α causes cell death and impaired autophagic flux suggesting it is important for this key cellular process. Collectively this work shows that GSK3α is important for podocyte health and that augmenting its function may be beneficial in treating glomerular disease.
Collapse
Affiliation(s)
| | - A C Lay
- Bristol Renal, University of Bristol
| | - L Ni
- Bristol Renal, University of Bristol
| | | | - J R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System & University of Toronto, Canada
| | - S E Quaggin
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, US
| | - G I Welsh
- Bristol Renal, University of Bristol
| | | |
Collapse
|
10
|
Höhne M, Frese CK, Grahammer F, Dafinger C, Ciarimboli G, Butt L, Binz J, Hackl MJ, Rahmatollahi M, Kann M, Schneider S, Altintas MM, Schermer B, Reinheckel T, Göbel H, Reiser J, Huber TB, Kramann R, Seeger-Nukpezah T, Liebau MC, Beck BB, Benzing T, Beyer A, Rinschen MM. Single-nephron proteomes connect morphology and function in proteinuric kidney disease. Kidney Int 2018; 93:1308-1319. [PMID: 29530281 DOI: 10.1016/j.kint.2017.12.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/01/2017] [Accepted: 12/14/2017] [Indexed: 12/25/2022]
Abstract
In diseases of many parenchymatous organs, heterogeneous deterioration of individual functional units determines the clinical prognosis. However, the molecular characterization at the level of such individual subunits remains a technological challenge that needs to be addressed in order to better understand pathological mechanisms. Proteinuric glomerular kidney diseases are frequent and assorted diseases affecting a fraction of glomeruli and their draining tubules to variable extents, and for which no specific treatment exists. Here, we developed and applied a mass spectrometry-based methodology to investigate heterogeneity of proteomes from individually isolated nephron segments from mice with proteinuric kidney disease. In single glomeruli from two different mouse models of sclerotic glomerular disease, we identified a coherent protein expression module consisting of extracellular matrix protein deposition (reflecting glomerular sclerosis), glomerular albumin (reflecting proteinuria) and LAMP1, a lysosomal protein. This module was associated with a loss of podocyte marker proteins while genetic ablation of LAMP1-correlated lysosomal proteases could ameliorate glomerular damage in vivo. Furthermore, proteomic analyses of individual glomeruli from patients with genetic sclerotic and non-sclerotic proteinuric diseases revealed increased abundance of lysosomal proteins, in combination with a decreased abundance of mutated gene products. Thus, altered protein homeostasis (proteostasis) is a conserved key mechanism in proteinuric kidney diseases. Moreover, our technology can capture intra-individual variability in diseases of the kidney and other tissues at a sub-biopsy scale.
Collapse
Affiliation(s)
- Martin Höhne
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Christian K Frese
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Florian Grahammer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Dafinger
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Department of Pediatrics, Division of Pediatric Nephrology, University Hospital of Cologne, Cologne, Germany
| | | | - Linus Butt
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Julia Binz
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Matthias J Hackl
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Mahdieh Rahmatollahi
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Martin Kann
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Simon Schneider
- Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Bernhard Schermer
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Thomas Reinheckel
- Institut of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies and Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University, Freiburg, Germany
| | - Heike Göbel
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Jochen Reiser
- Rush University Medical Center, Chicago, Illinois, USA
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies and Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University, Freiburg, Germany
| | - Rafael Kramann
- Division of Nephrology, RWTH Aachen University, Aachen, Germany
| | | | - Max C Liebau
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany; Department of Pediatrics, Division of Pediatric Nephrology, University Hospital of Cologne, Cologne, Germany
| | - Bodo B Beck
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Department of Human Genetics, University Hospital Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Andreas Beyer
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Markus M Rinschen
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany.
| |
Collapse
|