1
|
Zeng Y, Yuan W, Feng C, Peng L, Xie X, Peng F, Li T, Lin M, Zhang H, Dai H. Trametinib alleviates lipopolysaccharide-induced acute kidney injury by inhibiting macrophage polarization through the PI3K/Akt pathway. Transpl Immunol 2025:102183. [PMID: 39892762 DOI: 10.1016/j.trim.2025.102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Sepsis-induced acute kidney injury (AKI) is a severe condition characterized by dysregulation of pro- and anti-inflammatory responses. Targeting macrophage polarization between pro-inflammatory M1 and anti-inflammatory M2 cells offers a potential therapeutic approach for AKI. Trametinib (TRAM), an inhibitor of the MEK1/2 signaling pathway, was evaluated for its impact on M1/M2 polarization in AKI. METHODS Wild-type (WT) mice were subjected to lipopolysaccharide (LPS)-induced AKI and intraperitoneally treated with dimethyl sulfoxide (DMSO) or TRAM (10 mg/kg) for three days. Renal function was assessed by measuring creatinine levels. While histopathological changes, RNA sequencing data, and serum cytokine levels were analyzed. Macrophage M1/M2 polarization in kidney tissues was examined using flow cytometry and immunohistochemistry. Murine bone marrow-derived macrophages (BMDMs) were polarized to the M1 or M2 phenotype in vivo and treated with or without TRAM (10 μM). M1/M2 polarization was analyzed via flow cytometry, and PI3K/Akt signaling was evaluated by western blotting. RESULTS TRAM significantly improved renal function, as demonstrated by reduced serum creatinine levels (p < 0.01) and ameliorated histopathological damage (p < 0.01). Flow cytometry and immunohistochemistry revealed that TRAM markedly inhibited pro-inflammatory M1 macrophage polarization (p < 0.001). Additionally, TRAM reduced serum level of IFN-γ (p < 0.01) and IL-17 (p < 0.001). In vitro, TRAM suppressed M1 polarization (p < 0.05) by inhibiting the PI3K/Akt signaling pathway. CONCLUSION TRAM mitigated LPS-induced AKI by suppressing M1 macrophage polarization via the PI3K/Akt pathway, highlighting its therapeutic potential for AKI and other inflammatory kidney diseases.
Collapse
Affiliation(s)
- Yingqi Zeng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Wenjia Yuan
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Chen Feng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Longkai Peng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Xubiao Xie
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Fenghua Peng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Tengfang Li
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Minjie Lin
- Academic Affairs Department, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Hedong Zhang
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China.
| | - Helong Dai
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China.
| |
Collapse
|
2
|
Zhu J, Gong Z, Wang X, Zhang K, Ma Y, Zou H, Song R, Zhao H, Liu Z, Dong W. mTORC1 and mTORC2 Co-Protect against Cadmium-Induced Renal Tubular Epithelial Cell Apoptosis and Acute Kidney Injury by Regulating Protein Kinase B. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19667-19679. [PMID: 39219293 PMCID: PMC11404484 DOI: 10.1021/acs.jafc.4c05702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The potential threat of cadmium (Cd)-induced acute kidney injury (AKI) is increasing. In this study, our primary goal was to investigate the individual roles played by mTOR complexes, specifically mTORC1 and mTORC2, in Cd-induced apoptosis in mouse kidney cells. We constructed a mouse model with specific deletion of Raptor/Rictor renal cells. Inhibitors and activators of mTORC1 or mTORC2 were also applied. The effects of protein kinase B (AKT) activation and autophagy were studied. Both mTORC1 and mTORC2 were found to mediate the antiapoptotic mechanism of renal cells by regulating the AKT activity. Inhibition of mTORC1 or mTORC2 exacerbated Cd-induced kidney cell apoptosis, suggesting that both proteins exert antiapoptotic effects under Cd exposure. We further found that the AKT activation plays a key role in mTORC1/TORC2-mediated antiapoptosis, protecting Cd-exposed kidney cells from apoptosis. We also found that mTOR activators inhibited excessive autophagy, alleviated apoptosis, and promoted cell survival. These findings provide new insights into the regulatory mechanisms of mTOR in renal diseases and provide a theoretical basis for the development of novel therapeutic strategies to treat renal injury.
Collapse
Affiliation(s)
- Jiaqiao Zhu
- College
of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Institute
of Agricultural Science and Technology Development (Joint International
Research Laboratory of Agriculture and Agri-Product Safety of the
Ministry of Education of China), Yangzhou
University, Yangzhou, Jiangsu 225009, China
- Jiangsu
Co-Innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Zhonggui Gong
- College
of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Agricultural
High-tech Industrial Demonstration Area of the Yellow River Delta
of Shandong Province, Dongying, Shandong 257000, China
- National
Technological Innovation Center for Comprehensive Utilization of Saline-Alkali
Land, Dongying, Shandong 257000, China
| | - Xueru Wang
- College
of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Institute
of Agricultural Science and Technology Development (Joint International
Research Laboratory of Agriculture and Agri-Product Safety of the
Ministry of Education of China), Yangzhou
University, Yangzhou, Jiangsu 225009, China
- Jiangsu
Co-Innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Kanglei Zhang
- College
of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Institute
of Agricultural Science and Technology Development (Joint International
Research Laboratory of Agriculture and Agri-Product Safety of the
Ministry of Education of China), Yangzhou
University, Yangzhou, Jiangsu 225009, China
- Jiangsu
Co-Innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Yonggang Ma
- College
of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Institute
of Agricultural Science and Technology Development (Joint International
Research Laboratory of Agriculture and Agri-Product Safety of the
Ministry of Education of China), Yangzhou
University, Yangzhou, Jiangsu 225009, China
- Jiangsu
Co-Innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Hui Zou
- College
of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Institute
of Agricultural Science and Technology Development (Joint International
Research Laboratory of Agriculture and Agri-Product Safety of the
Ministry of Education of China), Yangzhou
University, Yangzhou, Jiangsu 225009, China
- Jiangsu
Co-Innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Ruilong Song
- College
of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Institute
of Agricultural Science and Technology Development (Joint International
Research Laboratory of Agriculture and Agri-Product Safety of the
Ministry of Education of China), Yangzhou
University, Yangzhou, Jiangsu 225009, China
- Jiangsu
Co-Innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Hongyan Zhao
- College
of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Institute
of Agricultural Science and Technology Development (Joint International
Research Laboratory of Agriculture and Agri-Product Safety of the
Ministry of Education of China), Yangzhou
University, Yangzhou, Jiangsu 225009, China
- Jiangsu
Co-Innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Zongping Liu
- College
of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Institute
of Agricultural Science and Technology Development (Joint International
Research Laboratory of Agriculture and Agri-Product Safety of the
Ministry of Education of China), Yangzhou
University, Yangzhou, Jiangsu 225009, China
- Jiangsu
Co-Innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Wenxuan Dong
- College
of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Laboratory
of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary
Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| |
Collapse
|
3
|
Cui Y, Chen C, Tang Z, Yuan W, Yue K, Cui P, Qiu X, Zhang H, Li T, Zhu X, Luo J, Sun S, Li Y, Feng C, Peng L, Xie X, Guo Y, Xie Y, Jiang X, Qi Z, Thomson AW, Dai H. TREM2 deficiency aggravates renal injury by promoting macrophage apoptosis and polarization via the JAK-STAT pathway in mice. Cell Death Dis 2024; 15:401. [PMID: 38849370 PMCID: PMC11161629 DOI: 10.1038/s41419-024-06756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024]
Abstract
The triggering receptor expressed on myeloid cells 2 (TREM2) is an immune receptor that affects cellular phenotypes by modulating phagocytosis and metabolism, promoting cell survival, and counteracting inflammation. Its role in renal injury, in particular, unilateral ureteral obstruction (UUO) or ischemia-reperfusion injury (IRI)-induced renal injury remains unclear. In our study, WT and Trem2-/- mice were employed to evaluate the role of TREM2 in renal macrophage infiltration and tissue injury after UUO. Bone marrow-derived macrophages (BMDM) from both mouse genotypes were cultured and polarized for in vitro experiments. Next, the effects of TREM2 on renal injury and macrophage polarization in IRI mice were also explored. We found that TREM2 expression was upregulated in the obstructed kidneys. TREM2 deficiency exacerbated renal inflammation and fibrosis 3 and 7 days after UUO, in association with reduced macrophage infiltration. Trem2-/- BMDM exhibited increased apoptosis and poorer survival compared with WT BMDM. Meanwhile, TREM2 deficiency augmented M1 and M2 polarization after UUO. Consistent with the in vivo observations, TREM2 deficiency led to increased polarization of BMDM towards the M1 proinflammatory phenotype. Mechanistically, TREM2 deficiency promoted M1 and M2 polarization via the JAK-STAT pathway in the presence of TGF-β1, thereby affecting cell survival by regulating mTOR signaling. Furthermore, cyclocreatine supplementation alleviated cell death caused by TREM2 deficiency. Additionally, we found that TREM2 deficiency promoted renal injury, fibrosis, and macrophage polarization in IRI mice. The current data suggest that TREM2 deficiency aggravates renal injury by promoting macrophage apoptosis and polarization via the JAK-STAT pathway. These findings have implications for the role of TREM2 in the regulation of renal injury that justify further evaluation.
Collapse
Affiliation(s)
- Yan Cui
- Medical College, Guangxi University, Nanning, 530004, China
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Chao Chen
- Medical College, Guangxi University, Nanning, 530004, China
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zhouqi Tang
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wenjia Yuan
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Kaiye Yue
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Pengcheng Cui
- Medical College, Guangxi University, Nanning, 530004, China
| | - Xia Qiu
- Medical College, Guangxi University, Nanning, 530004, China
| | - Hedong Zhang
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Tengfang Li
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xuejing Zhu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jiadi Luo
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Siyu Sun
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yaguang Li
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Chen Feng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Longkai Peng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xubiao Xie
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yong Guo
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yixin Xie
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xin Jiang
- Department of Organ Transplantation, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan, 450000, China
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning, 530004, China.
| | - Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| | - Helong Dai
- Medical College, Guangxi University, Nanning, 530004, China.
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
4
|
Lv D, Jiang H, Yang X, Li Y, Niu W, Zhang D. Advances in understanding of dendritic cell in the pathogenesis of acute kidney injury. Front Immunol 2024; 15:1294807. [PMID: 38433836 PMCID: PMC10904453 DOI: 10.3389/fimmu.2024.1294807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Acute kidney injury (AKI) is characterized by a rapid decline in renal function and is associated with a high morbidity and mortality rate. At present, the underlying mechanisms of AKI remain incompletely understood. Immune disorder is a prominent feature of AKI, and dendritic cells (DCs) play a pivotal role in orchestrating both innate and adaptive immune responses, including the induction of protective proinflammatory and tolerogenic immune reactions. Emerging evidence suggests that DCs play a critical role in the initiation and development of AKI. This paper aimed to conduct a comprehensive review and analysis of the role of DCs in the progression of AKI and elucidate the underlying molecular mechanism. The ultimate objective was to offer valuable insights and guidance for the treatment of AKI.
Collapse
Affiliation(s)
- Dongfang Lv
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huihui Jiang
- Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xianzhen Yang
- Department of Urology, Afliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yi Li
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Engineering Laboratory of Urinary Organ and Functional Reconstruction of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Weipin Niu
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Key Laboratory of Dominant Diseases of traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Denglu Zhang
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Key Laboratory of Dominant Diseases of traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
5
|
Yu B, Liu Y, Zhang Y, Xu L, Jin K, Sun A, Zhao X, Wang Y, Liu H. An SS31-rapamycin conjugate via RBC hitchhiking for reversing acute kidney injury. Biomaterials 2023; 303:122383. [PMID: 37939640 DOI: 10.1016/j.biomaterials.2023.122383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Mitochondrial dysfunction plays a major role in driving acute kidney injury (AKI) via alteration in energy and oxygen supply, which creates further ROS and inflammatory responses. However, mitochondrial targeting medicine in recovering AKI is challenging. Herein, we conjugated SS31, a mitochondria-targeted antioxidant tetrapeptide connecting a cleavable linker to rapamycin (Rapa), which provided specific interaction with FK506-binding protein (FKBP) in the RBCs. Once entering the bloodstream, SS31-Rapa could be directed to the intracellular space of RBCs, allowing the slow diffusion of the conjugate to tissues via the concentration gradient. The new RBC hitchhiking strategy enables the encapsulation of conjugate into RBC via a less traumatic and more natural and permissive manner, resulting in prolonging the t1/2 of SS31 by 6.9 folds. SS31-Rapa underwent the direct cellular uptake, instead of the lysosomal pathway, released SS31 in response to activated caspase-3 stimulation in apoptotic cells, favoring the mitochondrial accumulation of SS31. Combined with autophagy induction associated with Rapa, a single dose of SS31-Rapa can effectively reverse cisplatin and ischemia reperfusion-induced AKI. This work thus highlights a simple and effective RBC hitchhiking strategy and a clinically translatable platform technology to improve the outcome of other mitochondrial dysfunctional related diseases.
Collapse
Affiliation(s)
- Bohong Yu
- Collage of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China
| | - Yubo Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China
| | - Yingxi Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China
| | - Linyi Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China
| | - Kai Jin
- Wuya College of Innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China
| | - Andi Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China
| | - Xiuli Zhao
- Collage of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China.
| | - Yongjun Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China.
| | - Hongzhuo Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China.
| |
Collapse
|
6
|
Cui P, Chen C, Cui Y, Qiu X, Yue K, Li T, Zhang H, Yuan W, Xie Y, Guo Y, Tang Z, Li Y, Peng F, Jiang X, Luo X, Peng L, Qi Z, Dai H. DsbA-L deletion attenuates LPS-induced acute kidney injury by modulating macrophage polarization. Eur J Immunol 2023; 53:e2250071. [PMID: 37379419 DOI: 10.1002/eji.202250071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 05/28/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
Disulfide bond A oxidoreductase-like protein (DsbA-L) drives acute kidney injury (AKI) by directly upregulating the expression of voltage-dependent anion-selective channels in proximal tubular cells. However, the role of DsbA-L in immune cells remains unclear. In this study, we used an LPS-induced AKI mouse model to assess the hypothesis that DsbA-L deletion attenuates LPS-induced AKI and explore the potential mechanism of DsbA-L action. After 24 hours of LPS exposure, the DsbA-L knockout group exhibited lower serum creatinine levels compared to the WT group. Furthermore, peripheral levels of the inflammatory cytokine IL-6 were decreased. Transcriptomic data analysis revealed a significant down-regulation in the IL-17 and tumor necrosis factor pathways in DsbA-L knockout mice following LPS induction. Metabolomic analysis suggested that arginine metabolism was significantly different between the WT and DsbA-L knockout groups after LPS treatment. Notably, the M1 polarization of macrophages in the kidneys of DsbA-L knockout AKI mice was significantly reduced. Expression of the transcription factors NF-κB and AP-1 was downregulated after DsbA-L knockout. Our results suggest that DsbA-L regulates LPS-mediated oxidative stress, promotes M1 polarization of macrophages, and induces expression of inflammatory factors via the NF-κB/AP-1 pathway.
Collapse
Affiliation(s)
- Pengcheng Cui
- Medical College, Guangxi University, Nanning, China
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chao Chen
- Medical College, Guangxi University, Nanning, China
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Cui
- Medical College, Guangxi University, Nanning, China
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Qiu
- Medical College, Guangxi University, Nanning, China
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Kaiye Yue
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tengfang Li
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hedong Zhang
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenjia Yuan
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yixin Xie
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yong Guo
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhouqi Tang
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yaguang Li
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fenghua Peng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xin Jiang
- Department of Organ Transplantation, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, China
| | - Xuewei Luo
- Medical College, Guangxi University, Nanning, China
| | - Longkai Peng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning, China
| | - Helong Dai
- Medical College, Guangxi University, Nanning, China
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
7
|
Zhao Y, Zhao C, Guo H, Zhang Z, Xu H, Shi M, Xu Y, Wei D, Zhao Y. mTORC2 orchestrates monocytic and granulocytic lineage commitment by an ATF5-mediated pathway. iScience 2023; 26:107540. [PMID: 37649699 PMCID: PMC10462862 DOI: 10.1016/j.isci.2023.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/12/2023] [Accepted: 07/27/2023] [Indexed: 09/01/2023] Open
Abstract
Myeloid hematopoiesis is a finely controlled consecutive developmental process, which is essential to maintain peripheral innate immune homeostasis. Herein, we found that Rictor deletion caused the remarkable reduction of granulocyte-monocyte progenitors (GMPs), monocytes, and macrophages, while the levels of neutrophils were unaffected. Adoptive transfer of Rictor-deleted GMPs or common myeloid progenitors (CMPs) in syngeneic mice showed poor re-constitution of monocytes compared to wild-type GMPs or CMPs. In addition to decreasing the proliferation of CMPs/GMPs, Rictor deletion preferentially inhibited Ly6C+ monocyte differentiation, while enhancing neutrophil differentiation, as determined by colony formation assays. mTORC2 promotes monocyte development by downregulation of the AKT-Foxo4-activating transcription factor 5 (ATF5)-mitochondrial unfolded protein response (mtUPR) pathway. Genetic overexpression of ATF5 or exposure to ethidium bromide significantly rescued monocyte/macrophage differentiation defects of Rictor-deficient myeloid progenitors. Therefore, Rictor is required for CMP/GMP proliferation and acts as an important switch to balance monocytic and granulocytic lineage commitment in bone marrow.
Collapse
Affiliation(s)
- Yang Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chenxu Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huawen Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingpu Shi
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanan Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Wei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
8
|
Rogers NM, Zammit N, Nguyen-Ngo D, Souilmi Y, Minhas N, Meijles DN, Self E, Walters SN, Warren J, Cultrone D, El-Rashid M, Li J, Chtanova T, O'Connell PJ, Grey ST. The impact of the cytoplasmic ubiquitin ligase TNFAIP3 gene variation on transcription factor NF-κB activation in acute kidney injury. Kidney Int 2023; 103:1105-1119. [PMID: 37097268 DOI: 10.1016/j.kint.2023.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/08/2023] [Accepted: 02/23/2023] [Indexed: 04/26/2023]
Abstract
Nuclear factor κB (NF-κB) activation is a deleterious molecular mechanism that drives acute kidney injury (AKI) and manifests in transplanted kidneys as delayed graft function. The TNFAIP3 gene encodes A20, a cytoplasmic ubiquitin ligase and a master negative regulator of the NF- κB signaling pathway. Common population-specific TNFAIP3 coding variants that reduce A20's enzyme function and increase NF- κB activation have been linked to heightened protective immunity and autoimmune disease, but have not been investigated in AKI. Here, we functionally identified a series of unique human TNFAIP3 coding variants linked to the autoimmune genome-wide association studies single nucleotide polymorphisms of F127C; namely F127C;R22Q, F127C;G281E, F127C;W448C and F127C;N449K that reduce A20's anti-inflammatory function in an NF- κB reporter assay. To investigate the impact of TNFAIP3 hypomorphic coding variants in AKI we tested a mouse Tnfaip3 hypomorph in a model of ischemia reperfusion injury (IRI). The mouse Tnfaip3 coding variant I325N increases NF- κB activation without overt inflammatory disease, providing an immune boost as I325N mice exhibit enhanced innate immunity to a bacterial challenge. Surprisingly, despite exhibiting increased intra-kidney NF- κB activation with inflammation in IRI, the kidney of I325N mice was protected. The I325N variant influenced the outcome of IRI by changing the dynamic expression of multiple cytoprotective mechanisms, particularly by increasing NF- κB-dependent anti-apoptotic factors BCL-2, BCL-XL, c-FLIP and A20, altering the active redox state of the kidney with a reduction of superoxide levels and the enzyme super oxide dismutase-1, and enhancing cellular protective mechanisms including increased Foxp3+ T cells. Thus, TNFAIP3 gene variants represent a kidney and population-specific molecular factor that can dictate the course of IRI.
Collapse
Affiliation(s)
- Natasha M Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia; Renal and Transplant Medicine Unit, Westmead Hospital, Westmead, New South Wales, Australia; Westmead Clinical School, University of Sydney, New South Wales, Australia
| | - Nathan Zammit
- Transplantation Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; Translational Research Pillar, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Danny Nguyen-Ngo
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Yassine Souilmi
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, South Australia, Australia; Environment Institute, Faculty of Sciences, University of Adelaide, South Australia, Australia
| | - Nikita Minhas
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Daniel N Meijles
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Eleanor Self
- Transplantation Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; Translational Research Pillar, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Stacey N Walters
- Transplantation Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; Translational Research Pillar, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Joanna Warren
- Transplantation Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; Translational Research Pillar, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Daniele Cultrone
- Transplantation Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; Translational Research Pillar, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Maryam El-Rashid
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Jennifer Li
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Tatyana Chtanova
- Translational Research Pillar, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; Innate and Tumour Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Philip J O'Connell
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia; Renal and Transplant Medicine Unit, Westmead Hospital, Westmead, New South Wales, Australia; Westmead Clinical School, University of Sydney, New South Wales, Australia
| | - Shane T Grey
- Transplantation Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; Translational Research Pillar, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
9
|
Huang Z, Kuang N. Construction of a ceRNA Network Related to Rheumatoid Arthritis. Genes (Basel) 2022; 13:genes13040647. [PMID: 35456453 PMCID: PMC9031934 DOI: 10.3390/genes13040647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 01/27/2023] Open
Abstract
(1) Background: Rheumatoid arthritis (RA) is a common systemic autoimmune disease affecting many people and has an unclear and complicated physiological mechanism. The competing endogenous RNA (ceRNA) network plays an essential role in the development and occurrence of various human physiological processes. This study aimed to construct a ceRNA network related to RA. (2) Methods: We explored the GEO database for peripheral blood mononuclear cell (PBMC) samples and then analyzed the RNA of 52 samples (without treatment) to obtain lncRNAs (DELs), miRNAs (DEMs), and mRNAs (DEGs), which can be differentially expressed with statistical significance in the progression of RA. Next, a ceRNA network was constructed, based on the DELs, DEMs, and DEGs. At the same time, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis were used to validate the possible function of the ceRNA network. (3) Results: Through our analysis, 389 DELs, 247 DEMs, and 1081 DEGs were screened. After this, a ceRNA network was constructed for further statistical comparisons, including 16 lncRNAs, 1 miRNA, and 15 mRNAs. According to the GO and KEGG analysis, the ceRNA network was mainly enriched in the mTOR pathway, the dopaminergic system, and the Wnt signaling pathway. (4) Conclusions: The novel ceRNA network related to RA that we constructed offers novel insights into and targets for the underlying molecular mechanisms of the mTOR pathway, the dopaminergic system, and the Wnt signaling pathway (both classic and nonclassic pathways) that affect the level of the genetic regulator, which might offer novel ways to treat RA.
Collapse
Affiliation(s)
- Zhanya Huang
- Queen Mary School, Nanchang University, Nanchang 330006, China;
- Department of Immunology, Medical College of Nanchang University, Nanchang 330006, China
| | - Nanzhen Kuang
- Department of Immunology, Medical College of Nanchang University, Nanchang 330006, China
- Correspondence:
| |
Collapse
|
10
|
Parp3 promotes astrocytic differentiation through a tight regulation of Nox4-induced ROS and mTorc2 activation. Cell Death Dis 2020; 11:954. [PMID: 33159039 PMCID: PMC7648797 DOI: 10.1038/s41419-020-03167-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022]
Abstract
Parp3 is a member of the Poly(ADP-ribose) polymerase (Parp) family that has been characterized for its functions in strand break repair, chromosomal rearrangements, mitotic segregation and tumor aggressiveness. Yet its physiological implications remain unknown. Here we report a central function of Parp3 in the regulation of redox homeostasis in continuous neurogenesis in mice. We show that the absence of Parp3 provokes Nox4-induced oxidative stress and defective mTorc2 activation leading to inefficient differentiation of post-natal neural stem/progenitor cells to astrocytes. The accumulation of ROS contributes to the decreased activity of mTorc2 as a result of an oxidation-induced and Fbxw7-mediated ubiquitination and degradation of Rictor. In vivo, mTorc2 signaling is compromised in the striatum of naïve post-natal Parp3-deficient mice and 6 h after acute hypoxia-ischemia. These findings reveal a physiological function of Parp3 in the tight regulation of striatal oxidative stress and mTorc2 during astrocytic differentiation and in the acute phase of hypoxia-ischemia.
Collapse
|
11
|
Gui Y, Hou Q, Lu Q, Dai C, Li J. Loss of Rictor in tubular cells exaggerates lipopolysaccharide induced renal inflammation and acute kidney injury via Yap/Taz-NF-κB axis. Cell Death Discov 2020; 6:40. [PMID: 32528729 PMCID: PMC7260239 DOI: 10.1038/s41420-020-0274-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
Our previous study demonstrated that the mammalian target of rapamycin complex 2 (mTORC2) signaling alleviates renal inflammation and protects against cisplatin-induced AKI. However, the underlying mechanisms for mTORC2 in regulating renal inflammation in AKI remain to be determined. In this study, we found that lipopolysaccharide (LPS) could activate mTORC2 signaling in NRK-52E cells, and blockage of mTORC2 signaling led to Yap/Taz degradation, which in turn activated NF-κB signaling and induced inflammatory cytokines secretion. Overexpression of constitutively active Taz (Taz-S89A) could attenuate the inflammation-amplified role of mTORC2 blockage. In mouse models, tubule-specific deletion of Rictor had higher blood urea nitrogen level, severe morphological injury as well as more inflammatory cells accumulation compared with those in their littermate controls. Overall, these results demonstrate that mTORC2 signaling protects against renal inflammation and dictates the outcome of AKI by modulating Yap/Taz degradation.
Collapse
Affiliation(s)
- Yuan Gui
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu 210003 China
- Division of Nephrology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA
| | - Qing Hou
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu 210003 China
| | - Qingmiao Lu
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu 210003 China
| | - Chunsun Dai
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu 210003 China
| | - Jianzhong Li
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006 China
| |
Collapse
|
12
|
Protective Role of mTOR in Liver Ischemia/Reperfusion Injury: Involvement of Inflammation and Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7861290. [PMID: 31827701 PMCID: PMC6885218 DOI: 10.1155/2019/7861290] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/24/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
Abstract
Liver ischemia/reperfusion (IR) injury is a common phenomenon after liver resection and transplantation, which often results in liver graft dysfunction such as delayed graft function and primary nonfunction. The mammalian target of rapamycin (mTOR) is an evolutionarily highly conserved serine/threonine protein kinase, which coordinates cell growth and metabolism through sensing environmental inputs under physiological or pathological conditions, involved in the pathophysiological process of IR injury. In this review, we mainly present current evidence of the beneficial role of mTOR in modulating inflammation and autophagy under liver IR to provide some evidence for the potential therapies for liver IR injury.
Collapse
|
13
|
Dai H, Thomson AW, Rogers NM. Dendritic Cells as Sensors, Mediators, and Regulators of Ischemic Injury. Front Immunol 2019; 10:2418. [PMID: 31681306 PMCID: PMC6803430 DOI: 10.3389/fimmu.2019.02418] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) are highly specialized, bone marrow (BM)-derived antigen-processing and -presenting cells crucial to the induction, integration and regulation of innate, and adaptive immunity. They are stimulated by damage-associated molecular patterns (DAMPS) via pattern recognition receptors to promote inflammation and initiate immune responses. In addition to residing within the parenchyma of all organs as part of the heterogeneous mononuclear phagocyte system, DCs are an abundant component of the inflammatory cell infiltrate that appears in response to ischemia reperfusion injury (IRI). They can play disparate roles in the pathogenesis of IRI since their selective depletion has been found to be protective, deleterious, or of no benefit in mouse models of IRI. In addition, administration of DC generated and manipulated ex vivo can protect organs from IRI by suppressing inflammatory cytokine production, limiting the capacity of DCs to activate NKT cells, or enhancing regulatory T cell function. Few studies however have investigated specific signal transduction mechanisms underlying DC function and how these affect IRI. Here, we address current knowledge of the role of DCs in regulation of IRI, current gaps in understanding and prospects for innovative therapeutic intervention at the biological and pharmacological levels.
Collapse
Affiliation(s)
- Helong Dai
- Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation of Hunan Province, Changsha, China
| | - Angus W. Thomson
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Natasha M. Rogers
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
- Renal Division, Westmead Hospital, Westmead, NSW, Australia
- Westmead Clinical School, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
14
|
Nakao T, Ono Y, Dai H, Nakano R, Perez-Gutierrez A, Camirand G, Huang H, Geller DA, Thomson AW. DNAX Activating Protein of 12 kDa/Triggering Receptor Expressed on Myeloid Cells 2 Expression by Mouse and Human Liver Dendritic Cells: Functional Implications and Regulation of Liver Ischemia-Reperfusion Injury. Hepatology 2019; 70:696-710. [PMID: 30372546 PMCID: PMC6488456 DOI: 10.1002/hep.30334] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/03/2018] [Indexed: 12/26/2022]
Abstract
Liver interstitial dendritic cells (DCs) have been implicated in the control of ischemia-reperfusion injury (IRI) and host immune responses following liver transplantation. Mechanisms underlying these regulatory functions of hepatic DCs remain unclear. We have shown recently that the transmembrane immunoadaptor DNAX-activating protein of 12 kDa (DAP12) negatively regulates mouse liver DC maturation and proinflammatory and immune stimulatory functions. Here, we used PCR analysis and flow cytometry to characterize expression of DAP12 and its associated triggering receptor, triggering receptor expressed on myeloid cells 2 (TREM2), by mouse and human liver DCs and other immune cells compared with DCs in other tissues. We also examined the roles of DAP12 and TREM2 and their expression by liver DCs in the regulation of liver IRI. Injury was induced in DAP12-/- , TREM2-/- , or wild-type (WT) mice by 1 hour of 70% clamping and quantified following 6 hours of reperfusion. Both DAP12 and TREM2 were coexpressed at comparatively high levels by liver DCs. Mouse liver DCs lacking DAP12 or TREM2 displayed enhanced levels of nuclear factor κB and costimulatory molecule expression. Unlike normal WT liver DCs, DAP12-/- liver DC failed to inhibit proliferative responses of activated T cells. In vivo, DAP12-/- and TREM2-/- mice exhibited enhanced IRI accompanied by augmented liver DC activation. Elevated alanine aminotransferase levels and tissue injury were markedly reduced by infusion of WT but not DAP12-/- DC. Conclusion: Our data reveal a close association between DAP12 and TREM2 expression by liver DC and suggest that, by negatively regulating liver DC stimulatory function, DAP12 promotes their control of hepatic inflammatory responses; the DAP12/TREM2 signaling complex may represent a therapeutic target for control of acute liver injury/liver inflammatory disorders.
Collapse
Affiliation(s)
- Toshimasa Nakao
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yoshihiro Ono
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Helong Dai
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Ryosuke Nakano
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Angelica Perez-Gutierrez
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Geoffrey Camirand
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hai Huang
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David A. Geller
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Liver Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Angus W. Thomson
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Corresponding author: Angus W. Thomson, PhD DSc, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, W1540 BST, Pittsburgh, PA 15261, Phone: (412) 624-6392, Fax: (412)-624-1172,
| |
Collapse
|
15
|
Dai H, Thomson AW. The "other" mTOR complex: New insights into mTORC2 immunobiology and their implications. Am J Transplant 2019; 19:1614-1621. [PMID: 30801921 PMCID: PMC6538441 DOI: 10.1111/ajt.15320] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/10/2019] [Accepted: 02/15/2019] [Indexed: 01/25/2023]
Abstract
A central role of the mechanistic target of rapamycin (mTOR) in regulation of fundamental cell processes is well recognized. mTOR functions in two distinct complexes: rapamycin-sensitive mTOR complex (C) 1 and rapamycin-insensitive mTORC2. While the role of mTORC1 in shaping immune responses, including transplant rejection, and the influence of its antagonism in promoting allograft tolerance have been studied extensively using rapamycin, lack of selective small molecule inhibitors has limited understanding of mTORC2 biology. Within the past few years, however, intracellular localization of mTORC2, its contribution to mitochondrial fitness, cell metabolism, cytoskeletal modeling and cell migration, and its role in differentiation and function of immune cells have been described. Studies in mTORC2 knockdown/knockout mouse models and a new class of dual mTORC1/2 inhibitors, have shed light on the immune regulatory functions of mTORC2. These include regulation of antigen-presenting cell, NK cell, T cell subset, and B cell differentiation and function. mTORC2 has been implicated in regulation of ischemia/reperfusion injury and graft rejection. Potential therapeutic benefits of antagonizing mTORC2 to inhibit chronic rejection have also been described, while selective in vivo targeting strategies using nanotechnology have been developed. We briefly review and discuss these developments and their implications.
Collapse
Affiliation(s)
- Helong Dai
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA,Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Angus W. Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
16
|
Bian X, Bai Y, Su X, Zhao G, Sun G, Li D. Knockdown of periostin attenuates 5/6 nephrectomy‐induced intrarenal renin–angiotensin system activation, fibrosis, and inflammation in rats. J Cell Physiol 2019; 234:22857-22873. [PMID: 31127625 DOI: 10.1002/jcp.28849] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Xiaohui Bian
- Department of Nephrology Shengjing Hospital of China Medical University Shenyang P.R. China
| | - Yu Bai
- Department of Nephrology Shengjing Hospital of China Medical University Shenyang P.R. China
| | - Xiaoxiao Su
- Department of Nephrology Shengjing Hospital of China Medical University Shenyang P.R. China
| | - Guifeng Zhao
- Research Center Shengjing Hospital of China Medical University Shenyang P.R. China
| | - Guangping Sun
- Department of Nephrology Shengjing Hospital of China Medical University Shenyang P.R. China
| | - Detian Li
- Department of Nephrology Shengjing Hospital of China Medical University Shenyang P.R. China
| |
Collapse
|