1
|
Xu M, Qin Y, Xia Y, Wang G, Xiong Z, Song X, Ai L. Screening of oxalate-degrading probiotics and preventive effect of Lactiplantibacillus plantarum AR1089 on kidney stones. Food Funct 2024; 15:10163-10178. [PMID: 39300803 DOI: 10.1039/d4fo03133d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Calcium oxalate stone is the main type of kidney stone, so far there is no specific drug treatment. Here, we screened for oxalate-degrading probiotics and evaluated the potential preventive effect of lactic acid bacteria in rats with hyperoxaluria-induced kidney stones. The oxalate degradation efficiencies of the probiotics were determined to be 5-20% by in vitro experiments, of which the degradation efficiencies of Lactiplantibacillus plantarum AR342 and L. plantarum AR1089 were 17.32% and 14.15%, respectively. Through animal experiments, we found that L. plantarum AR1089 significantly attenuated kidney injury, as demonstrated by improving renal dysfunction and renal fibrosis, lowering creatinine and urea nitrogen levels. L. plantarum AR1089 was also effective in decreasing the number of calcium oxalate crystals in the urine and kidneys as well as ameliorating oxidative stress as evidenced by lowering the level of MDA and decreasing the level of SOD and CAT. Moreover, supplementation of L. plantarum AR1089 inhibited renal crystalline deposition by down-regulating the expression of KIM-1, OPN and MCP-1, and prevented hyperoxaluria-induced kidney stones by regulating the gut microbiota. Taken together, the present study shows that oral administration of L. plantarum AR1089, by attenuating kidney injury and regulating gut microbiota, is a potential therapy to reduce calcium oxalate crystals and prevent the progression of kidney stones.
Collapse
Affiliation(s)
- Mingyue Xu
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yugang Qin
- Aerospace Center Hospital, Beijing 100049, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
2
|
Papatsoris A, Alba AB, Galán Llopis JA, Musafer MA, Alameedee M, Ather H, Caballero-Romeu JP, Costa-Bauzá A, Dellis A, El Howairis M, Gambaro G, Geavlete B, Halinski A, Hess B, Jaffry S, Kok D, Kouicem H, Llanes L, Lopez Martinez JM, Popov E, Rodgers A, Soria F, Stamatelou K, Trinchieri A, Tuerk C. Management of urinary stones: state of the art and future perspectives by experts in stone disease. Arch Ital Urol Androl 2024; 96:12703. [PMID: 38934520 DOI: 10.4081/aiua.2024.12703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
AIM To present state of the art on the management of urinary stones from a panel of globally recognized urolithiasis experts who met during the Experts in Stone Disease Congress in Valencia in January 2024. Options of treatment: The surgical treatment modalities of renal and ureteral stones are well defined by the guidelines of international societies, although for some index cases more alternative options are possible. For 1.5 cm renal stones, both m-PCNL and RIRS have proven to be valid treatment alternatives with comparable stone-free rates. The m-PCNL has proven to be more cost effective and requires a shorter operative time, while the RIRS has demonstrated lower morbidity in terms of blood loss and shorter recovery times. SWL has proven to be less effective at least for lower calyceal stones but has the highest safety profile. For a 6mm obstructing stone of the pelviureteric junction (PUJ) stone, SWL should be the first choice for a stone less than 1 cm, due to less invasiveness and lower risk of complications although it has a lower stone free-rate. RIRS has advantages in certain conditions such as anticoagulant treatment, obesity, or body deformity. Technical issues of the surgical procedures for stone removal: In patients receiving antithrombotic therapy, SWL, PCN and open surgery are at elevated risk of hemorrhage or perinephric hematoma. URS, is associated with less morbidity in these cases. An individualized combined evaluation of risks of bleeding and thromboembolism should determine the perioperative thromboprophylactic strategy. Pre-interventional urine culture and antibiotic therapy are mandatory although UTI treatment is becoming more challenging due to increasing resistance to routinely applied antibiotics. The use of an intrarenal urine culture and stone culture is recommended to adapt antibiotic therapy in case of postoperative infectious complications. Measurements of temperature and pressure during RIRS are vital for ensuring patient safety and optimizing surgical outcomes although techniques of measurements and methods for data analysis are still to be refined. Ureteral stents were improved by the development of new biomaterials, new coatings, and new stent designs. Topics of current research are the development of drug eluting and bioresorbable stents. Complications of endoscopic treatment: PCNL is considered the most invasive surgical option. Fever and sepsis were observed in 11 and 0.5% and need for transfusion and embolization for bleeding in 7 and 0.4%. Major complications, as colonic, splenic, liver, gall bladder and bowel injuries are quite rare but are associated with significant morbidity. Ureteroscopy causes less complications, although some of them can be severe. They depend on high pressure in the urinary tract (sepsis or renal bleeding) or application of excessive force to the urinary tract (ureteral avulsion or stricture). Diagnostic work up: Genetic testing consents the diagnosis of monogenetic conditions causing stones. It should be carried out in children and in selected adults. In adults, monogenetic diseases can be diagnosed by systematic genetic testing in no more than 4%, when cystinuria, APRT deficiency, and xanthinuria are excluded. A reliable stone analysis by infrared spectroscopy or X-ray diffraction is mandatory and should be associated to examination of the stone under a stereomicroscope. The analysis of digital images of stones by deep convolutional neural networks in dry laboratory or during endoscopic examination could allow the classification of stones based on their color and texture. Scanning electron microscopy (SEM) in association with energy dispersive spectrometry (EDS) is another fundamental research tool for the study of kidney stones. The combination of metagenomic analysis using Next Generation Sequencing (NGS) techniques and the enhanced quantitative urine culture (EQUC) protocol can be used to evaluate the urobiome of renal stone formers. Twenty-four hour urine analysis has a place during patient evaluation together with repeated measurements of urinary pH with a digital pH meter. Urinary supersaturation is the most comprehensive physicochemical risk factor employed in urolithiasis research. Urinary macromolecules can act as both promoters or inhibitors of stone formation depending on the chemical composition of urine in which they are operating. At the moment, there are no clinical applications of macromolecules in stone management or prophylaxis. Patients should be evaluated for the association with systemic pathologies. PROPHYLAXIS Personalized medicine and public health interventions are complementary to prevent stone recurrence. Personalized medicine addresses a small part of stone patients with a high risk of recurrence and systemic complications requiring specific dietary and pharmacological treatment to prevent stone recurrence and complications of associated systemic diseases. The more numerous subjects who form one or a few stones during their entire lifespan should be treated by modifications of diet and lifestyle. Primary prevention by public health interventions is advisable to reduce prevalence of stones in the general population. Renal stone formers at "high-risk" for recurrence need early diagnosis to start specific treatment. Stone analysis allows the identification of most "high-risk" patients forming non-calcium stones: infection stones (struvite), uric acid and urates, cystine and other rare stones (dihydroxyadenine, xanthine). Patients at "high-risk" forming calcium stones require a more difficult diagnosis by clinical and laboratory evaluation. Particularly, patients with cystinuria and primary hyperoxaluria should be actively searched. FUTURE RESEARCH Application of Artificial Intelligence are promising for automated identification of ureteral stones on CT imaging, prediction of stone composition and 24-hour urinary risk factors by demographics and clinical parameters, assessment of stone composition by evaluation of endoscopic images and prediction of outcomes of stone treatments. The synergy between urologists, nephrologists, and scientists in basic kidney stone research will enhance the depth and breadth of investigations, leading to a more comprehensive understanding of kidney stone formation.
Collapse
Affiliation(s)
- Athanasios Papatsoris
- 2nd Department of Urology, School of Medicine, Sismanoglio Hospital, National and Kapodistrian University of Athens; U-merge Scientific Office.
| | - Alberto Budia Alba
- Urology Department, La Fe University and Polytechnic Hospital, Valencia.
| | | | | | | | | | | | - Antònia Costa-Bauzá
- Laboratory of Renal Lithiasis Research, University Institute of Health Sciences Research (IUNICS-IdISBa), University of Illes Balears, Palma de Mallorca.
| | - Athanasios Dellis
- 2nd Department of Surgery, Aretaieion Academic Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens.
| | | | - Giovanni Gambaro
- Division of Nephrology, Department of Medicine, University Hospital of Verona.
| | - Bogdan Geavlete
- "Carol Davila" University of Medicine and Pharmacy & "Saint John" Emergency Clinical Hospital, Bucharest.
| | - Adam Halinski
- Private Medical Center "Klinika Wisniowa" Zielona Gora.
| | - Bernhard Hess
- Internal Medicine & Nephrology, KidneyStoneCenter Zurich, Klinik Im Park, Zurich.
| | | | - Dirk Kok
- Saelo Scientific Support, Oegstgeest.
| | | | - Luis Llanes
- Urology Department, University Hospital of Getafe, Getafe, Madrid.
| | | | - Elenko Popov
- Department of Urology, UMHAT "Tzaritza Yoanna-ISUL", Medical University, Sofia.
| | | | - Federico Soria
- Experimental Surgery Department, Ramón y Cajal University Hospital, Madrid.
| | - Kyriaki Stamatelou
- MESOGEIOS Nephrology Center, Haidari Attica and NEPHROS.EU Private Clinic, Athens.
| | | | - Christian Tuerk
- Urologic Department, Sisters of Charity Hospital and Urologic Praxis, Wien.
| |
Collapse
|
3
|
Li K, Wang S, Qu W, Ahmed AA, Enneb W, Obeidat MD, Liu HY, Dessie T, Kim IH, Adam SY, Cai D. Natural products for Gut-X axis: pharmacology, toxicology and microbiology in mycotoxin-caused diseases. Front Pharmacol 2024; 15:1419844. [PMID: 38978980 PMCID: PMC11228701 DOI: 10.3389/fphar.2024.1419844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024] Open
Abstract
Introduction: The gastrointestinal tract is integral to defending against external contaminants, featuring a complex array of immunological, physical, chemical, and microbial barriers. Mycotoxins, which are toxic metabolites from fungi, are pervasive in both animal feed and human food, presenting substantial health risks. Methods: This review examines the pharmacological, toxicological, and microbiological impacts of natural products on mycotoxicosis, with a particular focus on the gut-x axis. The analysis synthesizes current understanding and explores the role of natural products rich in polysaccharides, polyphenols, flavonoids, and saponins. Results: The review highlights that mycotoxins can disrupt intestinal integrity, alter inflammatory responses, damage the mucus layer, and disturb the bacterial balance. The toxins' effects are extensive, potentially harming the immune system, liver, kidneys, and skin, and are associated with serious conditions such as cancer, hormonal changes, genetic mutations, bleeding, birth defects, and neurological issues. Natural products have shown potential anticancer, anti-tumor, antioxidant, immunomodulatory, and antitoxic properties. Discussion: The review underscores the emerging therapeutic strategy of targeting gut microbial modulation. It identifies knowledge gaps and suggests future research directions to deepen our understanding of natural products' role in gut-x axis health and to mitigate the global health impact of mycotoxin-induced diseases.
Collapse
Affiliation(s)
- Kaiqi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shiqi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wuyi Qu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Abdelkareem A. Ahmed
- Department of Veterinary Biomedical Sciences, Botswana University of Agriculture and Agriculture and Natural Resources, Gaborone, Botswana
| | - Wael Enneb
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Mohammad Diya’ Obeidat
- Department of Animal Production, Jordan University of Science and Technology, Irbid, Jordan
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tadelle Dessie
- International Livestock Research Institute, Addis Ababa, Ethiopia
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, Republic of Korea
| | - Saber Y. Adam
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Wan W, Wu W, Amier Y, Li X, Yang J, Huang Y, Xun Y, Yu X. Engineered microorganisms: A new direction in kidney stone prevention and treatment. Synth Syst Biotechnol 2024; 9:294-303. [PMID: 38510204 PMCID: PMC10950756 DOI: 10.1016/j.synbio.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
Numerous studies have shown that intestinal and urinary tract flora are closely related to the formation of kidney stones. The removal of probiotics represented by lactic acid bacteria and the colonization of pathogenic bacteria can directly or indirectly promote the occurrence of kidney stones. However, currently existing natural probiotics have limitations. Synthetic biology is an emerging discipline in which cells or living organisms are genetically designed and modified to have biological functions that meet human needs, or even create new biological systems, and has now become a research hotspot in various fields. Using synthetic biology approaches of microbial engineering and biological redesign to enable probiotic bacteria to acquire new phenotypes or heterologous protein expression capabilities is an important part of synthetic biology research. Synthetic biology modification of microorganisms in the gut and urinary tract can effectively inhibit the development of kidney stones by a range of means, including direct degradation of metabolites that promote stone production or indirect regulation of flora homeostasis. This article reviews the research status of engineered microorganisms in the prevention and treatment of kidney stones, to provide a new and effective idea for the prevention and treatment of kidney stones.
Collapse
Affiliation(s)
- Wenlong Wan
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Weisong Wu
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yirixiatijiang Amier
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xianmiao Li
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Junyi Yang
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yisheng Huang
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yang Xun
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiao Yu
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
5
|
Noonin C, Thongboonkerd V. Beneficial roles of gastrointestinal and urinary microbiomes in kidney stone prevention via their oxalate-degrading ability and beyond. Microbiol Res 2024; 282:127663. [PMID: 38422861 DOI: 10.1016/j.micres.2024.127663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Formation of calcium oxalate (CaOx) crystal, the most common composition in kidney stones, occurs following supersaturation of calcium and oxalate ions in the urine. In addition to endogenous source, another main source of calcium and oxalate ions is dietary intake. In the intestinal lumen, calcium can bind with oxalate to form precipitates to be eliminated with feces. High intake of oxalate-rich foods, inappropriate amount of daily calcium intake, defective intestinal transporters for oxalate secretion and absorption, and gastrointestinal (GI) malabsorption (i.e., from gastric bypass surgery) can enhance intestinal oxalate absorption, thereby increasing urinary oxalate level and risk of kidney stone disease (KSD). The GI microbiome rich with oxalate-degrading bacteria can reduce intestinal oxalate absorption and urinary oxalate level. In addition to the oxalate-degrading ability, the GI microbiome also affects expression of oxalate transporters and net intestinal oxalate transport, cholesterol level, and short-chain fatty acids (SCFAs) production, leading to lower KSD risk. Recent evidence also shows beneficial effects of urinary microbiome in KSD prevention. This review summarizes the current knowledge on the aforementioned aspects. Potential benefits of the GI and urinary microbiomes as probiotics for KSD prevention are emphasized. Finally, challenges and future perspectives of probiotic treatment in KSD are discussed.
Collapse
Affiliation(s)
- Chadanat Noonin
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
6
|
Li J, Wei J, Wang J, Xu T, Wu B, Yang S, Jing S, Wu H, Hao H. Association between gut microbiota and spinal stenosis: a two-sample mendelian randomization study. Front Immunol 2024; 15:1360132. [PMID: 38707908 PMCID: PMC11066289 DOI: 10.3389/fimmu.2024.1360132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Considerable evidence has unveiled a potential correlation between gut microbiota and spinal degenerative diseases. However, only limited studies have reported the direct association between gut microbiota and spinal stenosis. Hence, in this study, we aimed to clarify this relationship using a two-sample mendelian randomization (MR) approach. Materials and Methods Data for two-sample MR studies was collected and summarized from genome-wide association studies (GWAS) of gut microbiota (MiBioGen, n = 13, 266) and spinal stenosis (FinnGen Biobank, 9, 169 cases and 164, 682 controls). The inverse variance-weighted meta-analysis (IVW), complemented with weighted median, MR-Egger, weighted mode, and simple mode, was used to elucidate the causality between gut microbiota and spinal stenosis. In addition, we employed mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) and the MR-Egger intercept test to assess horizontal multiplicity. Cochran's Q test to evaluate heterogeneity, and "leave-one-out" sensitivity analysis to determine the reliability of causality. Finally, an inverse MR analysis was performed to assess the reverse causality. Results The IVW results indicated that two gut microbial taxa, the genus Eubacterium fissicatena group and the genus Oxalobacter, have a potential causal relationship with spinal stenosis. Moreover, eight potential associations between genetic liability of the gut microbiota and spinal stenosis were implied. No significant heterogeneity of instrumental variables or horizontal pleiotropy were detected. In addition, "leave-one-out" sensitivity analysis confirmed the reliability of causality. Finally, the reverse MR analysis revealed that no proof to substantiate the discernible causative relationship between spinal stenosis and gut microbiota. Conclusion This analysis demonstrated a possible causal relationship between certain particular gut microbiota and the occurrence of spinal stenosis. Further studies focused on the mechanism of gut microbiota-mediated spinal stenosis can lay the groundwork for targeted prevention, monitoring, and treatment of spinal stenosis.
Collapse
Affiliation(s)
- Jian Li
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Jinpeng Wei
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Jiani Wang
- Department of Pediatric Medicine, Shanxi Medical University, Taiyuan, China
| | - Tao Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baofeng Wu
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Shuhan Yang
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Shaoze Jing
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Hua Wu
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Haihu Hao
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
7
|
Jiang X, Li X, Li S, Wang M, Zhao Y, He S, Liu J, Fan W. Potential mechanism of probiotic fermentation of Auricularia cornea var. Li./blueberry to reduce obesity induced by a high-fat diet. Food Chem X 2024; 21:101160. [PMID: 38379806 PMCID: PMC10876580 DOI: 10.1016/j.fochx.2024.101160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/31/2023] [Accepted: 01/21/2024] [Indexed: 02/22/2024] Open
Abstract
The primary objective of this research was to investigate the effects of fermented Auricularia cornea var. Li./blueberry (FACB) on the gut microbiota of these super-large mouse models. The study, found that the groups who were given different amounts of FACB saw a significant reduction in their triglyceride and total cholesterol levels. There was a noteworthy increase in the ranks of high-density lipoprotein cholesterol (HDL-C) (P < 0.05). Furthermore, it was noted that FACB influenced the gut microbiota of the obese rats, improving in both the variety and quantity of short-chain fatty acids present in their intestines. This research provided the inaugural evidence of FACB's potential as an effective anti-obesity agent in a high-fat diet model, implying it could serve as a preventive measure against obesity.
Collapse
Affiliation(s)
- Xintong Jiang
- College of Life Sciences and Engineering, Lanzhou University of Technology, Gansu 730050, China
| | - Xue Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Shuang Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Minghui Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yunzhu Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - SiHan He
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Junmei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Wenguang Fan
- College of Life Sciences and Engineering, Lanzhou University of Technology, Gansu 730050, China
| |
Collapse
|
8
|
Pan Y, Su J, Liu S, Li Y, Xu G. Causal effects of gut microbiota on the risk of urinary tract stones: A bidirectional two-sample mendelian randomization study. Heliyon 2024; 10:e25704. [PMID: 38404890 PMCID: PMC10884461 DOI: 10.1016/j.heliyon.2024.e25704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/04/2023] [Accepted: 01/31/2024] [Indexed: 02/27/2024] Open
Abstract
Background Recent studies increasingly suggest notable changes in both the quantity and types of gut microbiota among individuals suffering from urinary tract stones. However, the causal relationship between GMB and urinary tract stone formation remains elusive, which we aim to further investigate in this research through Mendelian Randomization (MR) analysis. Materials and methods Single nucleotide polymorphisms (SNPs) associated with the human GMB were selected from MiBioGen International Consortium GWAS dataset. Data on urinary tract stone-related traits and associated SNPs were sourced from the IEU Open GWAS database. To investigate the causal relationships between gut microbiota and urinary tract stones, Mendelian Randomization (MR) was applied using genetic variants as instrumental variables, utilizing a bidirectional two-sample MR framework. This analysis incorporated various statistical techniques such as inverse variance weighting, weighted median analysis, MR-Egger, and the maximum likelihood method. To ensure the reliability of the findings, a range of sensitivity tests were conducted, including Cochran's Q test, the MR-Egger intercept, leave-one-out cross-validation, and examination of funnel plots. Results The results revealed the causal relationship between the increase in the abundance of 10 microbial taxa, including Genus-Barnesiella (IVW OR = 0.73, 95%CI 0.73-0.89, P = 2.29 × 10-3) and Genus-Flavonifractor (IVW OR = 0.69, 95%CI 0.53-0.91, P = 8.57 × 10-3), and the decreased risk of urinary tract stone formation. Conversely, the development of urinary tract stones was observed to potentially instigate alterations in the abundance of 13 microbial taxa, among which Genus-Ruminococcus torques group was notably affected (IVW OR = 1.07, 95%CI 0.64-0.98, P = 1.86 × 10-3). In this context, Genus-Clostridium sensustricto1 exhibited a bidirectional causal relationship with urinary tract stones, while the remaining significant microbial taxa demonstrated unidirectional causal effects in the two-sample MR analysis. Sensitivity analyses did not identify significant estimates of heterogeneity or pleiotropy. Conclusion To summarize, the results of this study suggest a likely causative link between gut microbiota and the incidence of urinary tract stones. This insight opens up potential pathways for discovering biomarkers and therapeutic targets in the management and prevention of urolithiasis. However, further in-depth research is warranted to investigate these associations.
Collapse
Affiliation(s)
- Yongdong Pan
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingyi Su
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shengnan Liu
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yueyan Li
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guofeng Xu
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
He SK, Wang JH, Li T, Yin S, Cui JW, Xiao YF, Tang Y, Wang J, Bai YJ. Sleep and circadian rhythm disturbance in kidney stone disease: a narrative review. Front Endocrinol (Lausanne) 2023; 14:1293685. [PMID: 38089624 PMCID: PMC10711275 DOI: 10.3389/fendo.2023.1293685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
The circadian rhythm generated by circadian clock genes functions as an internal timing system. Since the circadian rhythm controls abundant physiological processes, the circadian rhythm evolved in organisms is salient for adaptation to environmental change. A disturbed circadian rhythm is a trigger for numerous pathological events. Recently, accumulated data have indicated that kidney stone disease (KSD) is related to circadian rhythm disturbance. However, the mechanism between them has not been fully elucidated. In this narrative review, we summarized existing evidence to illustrate the possible association between circadian rhythm disturbance and KSD based on the epidemiological studies and risk factors that are linked to circadian rhythm disturbance and discuss some chronotherapies for KSD. In summary, KSD is associated with systemic disorders. Metabolic syndrome, inflammatory bowel disease, and microbiome dysbiosis are the major risk factors supported by sufficient data to cause KSD in patients with circadian rhythm disturbance, while others including hypertension, vitamin D deficiency, parathyroid gland dysfunction, and renal tubular damage/dysfunction need further investigation. Then, some chronotherapies for KSD were confirmed to be effective, but the molecular mechanism is still unclear.
Collapse
Affiliation(s)
- Si-Ke He
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Hao Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Li
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shan Yin
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jian-Wei Cui
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yun-Fei Xiao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yin Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jia Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yun-Jin Bai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Zayed S, Goldfarb DS, Joshi S. Popular Diets and Kidney Stones. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:529-536. [PMID: 38453270 DOI: 10.1053/j.akdh.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 03/09/2024]
Abstract
Popular diets often influence dietary patterns, which have different implications for kidney stone risk. Despite the wide variety of popular diets, some general principles can be gleaned from investigating their potential impact on nephrolithiasis. Plant-based diets, including Dietary Approaches to Stop Hypertension, Mediterranean, flexitarian, and vegetarian diets, may protect against nephrolithiasis when they consist largely of unprocessed plant foods, while carbohydrate-restricted diets (including high-protein diets and the ketogenic diet) may raise kidney stone risk. Patients should be advised to consume a diet rich in whole plants, particularly fruits and vegetables, and minimize their consumption of animal proteins. Accompanying fruits and vegetables that are higher in oxalate content with more water and some dairy intake may also be useful. (We address the oxalate content of fruits and vegetables further below). Calcium consumption is an important component of decreasing the risk of kidney stones, as higher dietary calcium from dairy or nondairy sources is independently associated with lower kidney stone risk. Patients should also be advised to be conscious of fat intake, as fat in the intestinal lumen may complex with calcium and therefore increase urinary oxalate excretion. Finally, patients should avoid consumption of processed foods, which often contain added fructose and high sodium content, two factors that increase kidney stone risk.
Collapse
Affiliation(s)
- Sara Zayed
- New York University Grossman School of Medicine, New York, NY; Department of Medicine, New York University Grossman School of Medicine, New York, NY.
| | - David S Goldfarb
- New York University Grossman School of Medicine, New York, NY; Department of Medicine, New York University Grossman School of Medicine, New York, NY; Nephrology Section, New York Harbor VA Healthcare System, New York, NY
| | - Shivam Joshi
- Department of Medicine, New York University Grossman School of Medicine, New York, NY; Department of Veterans Affairs, Orlando VAMC, Orlando, FL.
| |
Collapse
|
11
|
Tian Y, Zhao J, Chen L, Zhang C, Chu X, Xia Y. Sanjin Paishi Decoction improves the imbalance of gut microbiota and regulates MAPK signaling pathway to inhibit calcium oxalate stones in rats. Int Urol Nephrol 2023; 55:2421-2429. [PMID: 37368087 DOI: 10.1007/s11255-023-03641-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/14/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION Sanjin Paishi Decoction (SJPSD) has positive effects on stone prevention; however, there is a lack of convincing evidence in the prevention of calcium oxalate stones. This study aimed investigates the effect of SJPSD on calcium oxalate stones and to explore its mechanism. METHODS The rat model of calcium oxalate stones was established and rats were treated with different doses of SJPSD. The pathological damage of kidney tissues was observed by HE staining, the deposition of calcium oxalate crystals in kidney tissues was examined by Von Kossa staining, and the levels of creatinine (CREA), urea (UREA), calcium (Ca), phosphorus (P), and magnesium (Mg) in serum were analyzed biochemically, the levels of IL-1β, IL-6, and TNF-α in serum were measured by ELISA, and the protein expression of Raf1, MEK1, p-MEK1, ERK1/2, p-ERK1/2, and Cleaved caspase-3 in kidney tissues was analyzed by Western blot. Moreover, the changes in gut microbiota were analyzed by 16S rRNA sequencing. RESULTS SJPSD attenuated the pathological damage of renal tissues, reduced the levels of CREA, UREA, Ca, P, and Mg, and inhibited the expression of Raf1, p-MEK1, p-ERK1/2, and Cleaved caspase-3 in renal tissues (P < 0.05). SJPSD treatment affected the composition of intestinal microbiota in rats with calcium oxalate stones. CONCLUSION The mechanism of SJPSD inhibition of calcium oxalate stone injury in rats may be related to the inhibition of the MAPK signaling pathway and regulation of gut microbiota imbalance.
Collapse
Affiliation(s)
- Ying Tian
- Department of Urology Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39, Twelve Bridges Road, Jinniu District, Chengdu, 610072, Sichuan Province, China
| | - Juan Zhao
- Department of Urology Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39, Twelve Bridges Road, Jinniu District, Chengdu, 610072, Sichuan Province, China
| | - Lan Chen
- Department of Urology Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39, Twelve Bridges Road, Jinniu District, Chengdu, 610072, Sichuan Province, China
| | - Chuang Zhang
- Department of Urology Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39, Twelve Bridges Road, Jinniu District, Chengdu, 610072, Sichuan Province, China
| | - Xin Chu
- Department of Nursing, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39, Twelve Bridges Road, Jinniu District, Chengdu, 610072, Sichuan Province, China.
| | - Yuguo Xia
- Department of Urology Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39, Twelve Bridges Road, Jinniu District, Chengdu, 610072, Sichuan Province, China.
| |
Collapse
|
12
|
Shi R, Huang C, Gao Y, Li X, Zhang C, Li M. Gut microbiota axis: potential target of phytochemicals from plant-based foods. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
13
|
Liu M, Zhang Y, Wu J, Gao M, Zhu Z, Chen H. Causal relationship between kidney stones and gut microbiota contributes to the gut-kidney axis: a two-sample Mendelian randomization study. Front Microbiol 2023; 14:1204311. [PMID: 37502408 PMCID: PMC10368867 DOI: 10.3389/fmicb.2023.1204311] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Background Gut microbiota, particularly Oxalobacter formigenes, has been previously reported to be associated with kidney stones. However, the conflicting results from both observational and intervention studies have created substantial uncertainty regarding the contribution of Oxalobacter formigenes to the formation of kidney stone. Methods We employed a two-sample MR analysis to investigate the causal relationship between gut microbiota and kidney stones using GWASs summary statistics obtained from the MiBioGen and FinnGen consortia. Moreover, we conducted a reserve MR analysis to assess the direction of the causal associations between gut microbiota and kidney stones. The inverse variance weighted (IVW) approach represents the primary method of Mendelian Randomization (MR) analysis. Results Our analyses do not yield supportive evidence for a causal link between the genus Oxalobacter (OR = 0.99, 95% CI: 0.90-1.09, p = 0.811) and the formation of kidney stones. The order Actinomycetales (OR = 0.79, 95% CI: 0.65-0.96, p = 0.020), family Actinomycetaceae (OR = 0.79, 95% CI: 0.65-0.96, p = 0.019), family Clostridiaceae 1 (OR = 0.80, 95% CI: 0.67-0.96, p = 0.015), genus Clostridiumsensustricto 1 (OR = 0.81, 95% CI: 0.67-0.98, p = 0.030) and genus Hungatella (OR = 0.86, 95% CI: 0.74-0.99, p = 0.040) had protective effects on kidney stones, and the genus Haemophilus (OR = 1.16, 95% CI: 1.01-1.33, p = 0.032), genus Ruminococcaceae (UCG010) (OR = 1.38, 95% CI: 1.04-1.84, p = 0.028), genus Subdoligranulum (OR = 1.27, 95% CI: 1.06-1.52, p = 0.009) were risk factors for kidney stones. Differential abundance analysis provide no evidence of a association between Oxalobacter formigenes and kidney stones, and showed genus Subdoligranulum were risk factors for kidney stones. Reverse MR analysis did not indicate any causal association of kidney stones on gut microbiota. No considerable heterogeneity of instrumental variables or horizontal pleiotropy was observed. Conclusion Our two-sample MR study did not find any causal relationship between genus Oxalobacter and kidney stones. The association between gut microbiota and kidney stones does not solely depend on the presence of genus Oxalobacter/Oxalobacter formigenes. A more integrated approach using multiple omics platforms is needed to better understand the pathogenesis of kidney stones in the context of complex gene-environment interactions over time.
Collapse
Affiliation(s)
- Minghui Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Youjie Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Wu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Meng Gao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zewu Zhu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, United States
| | - Hequn Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Wang J, Chen G, Chen H, Chen J, Su Q, Zhuang W. Exploring the characteristics of gut microbiome in patients of Southern Fujian with hypocitraturia urolithiasis and constructing clinical diagnostic models. Int Urol Nephrol 2023:10.1007/s11255-023-03662-6. [PMID: 37294502 DOI: 10.1007/s11255-023-03662-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/04/2023] [Indexed: 06/10/2023]
Abstract
PURPOSE Hypocitraturia is an important cause of urolithiasis. Exploring the characteristics of the gut microbiome (GMB) of hypocitriuria urolithiasis (HCU) patients can provide new ideas for the treatment and prevention of urolithiasis. METHODS The 24 h urinary citric acid excretion of 19 urolithiasis patients was measured, and patients were divided into the HCU group and the normal citrate urolithiasis (NCU) group. The 16 s ribosomal RNA (rRNA) was used to detect GMB composition differences and construct operational taxonomic units (OTUs) coexistence networks. The key bacterial community was determined by Lefse analysis, Metastats analysis and RandomForest analysis. Redundancy analysis (RDA) and Pearson correlation analysis visualized the correlation between key OTUs and clinical features and then established the disease diagnosis model of microbial-clinical indicators. Finally, PICRUSt2 was used to explore the metabolic pathway of related GMB in HCU patients. RESULTS The alpha diversity of GMB in HCU group was increased and Beta diversity analysis suggested significant differences between HCU and NCU groups, which was related to renal function damage and urinary tract infection. Ruminococcaceae_ge and Turicibacter are the characteristic bacterial groups of HCU. Correlation analysis showed that the characteristic bacterial groups were significantly associated with various clinical features. Based on this, the diagnostic models of microbiome-clinical indicators in HCU patients were constructed with the areas under the curve (AUC) of 0.923 and 0.897, respectively. Genetic and metabolic processes of HCU are affected by changes in GMB abundance. CONCLUSION GMB disorder may be involved in the occurrence and clinical characteristics of HCU by influencing genetic and metabolic pathways. The new microbiome-clinical indicator diagnostic model is effective.
Collapse
Affiliation(s)
- Jialiang Wang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Licheng District Zhongshan North Road, Quanzhou, 362000, Fujian, China
| | - Guofeng Chen
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Licheng District Zhongshan North Road, Quanzhou, 362000, Fujian, China
| | - Heyi Chen
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Licheng District Zhongshan North Road, Quanzhou, 362000, Fujian, China
| | - Jiabi Chen
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Licheng District Zhongshan North Road, Quanzhou, 362000, Fujian, China
| | - Qingfu Su
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Licheng District Zhongshan North Road, Quanzhou, 362000, Fujian, China.
| | - Wei Zhuang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Licheng District Zhongshan North Road, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
15
|
Chen T, Qian B, Zou J, Luo P, Zou J, Li W, Chen Q, Zheng L. Oxalate as a potent promoter of kidney stone formation. Front Med (Lausanne) 2023; 10:1159616. [PMID: 37342493 PMCID: PMC10278359 DOI: 10.3389/fmed.2023.1159616] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Kidney stones are among the most prevalent urological diseases, with a high incidence and recurrence rate. Treating kidney stones has been greatly improved by the development of various minimally invasive techniques. Currently, stone treatment is relatively mature. However, most current treatment methods are limited to stones and cannot effectively reduce their incidence and recurrence. Therefore, preventing disease occurrence, development, and recurrence after treatment, has become an urgent issue. The etiology and pathogenesis of stone formation are key factors in resolving this issue. More than 80% of kidney stones are calcium oxalate stones. Several studies have studied the formation mechanism of stones from the metabolism of urinary calcium, but there are few studies on oxalate, which plays an equally important role in stone formation. Oxalate and calcium play equally important roles in calcium oxalate stones, whereas the metabolism and excretion disorders of oxalate play a crucial role in their occurrence. Therefore, starting from the relationship between renal calculi and oxalate metabolism, this work reviews the occurrence of renal calculi, oxalate absorption, metabolism, and excretion mechanisms, focusing on the key role of SLC26A6 in oxalate excretion and the regulatory mechanism of SLC26A6 in oxalate transport. This review provides some new clues for the mechanism of kidney stones from the perspective of oxalate to improve the understanding of the role of oxalate in the formation of kidney stones and to provide suggestions for reducing the incidence and recurrence rate of kidney stones.
Collapse
Affiliation(s)
- Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Jun Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Liying Zheng
- Department of Graduate, The First Affiliated Hospital of Ganna Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
16
|
Malieckal DA, Ganesan C, Mendez DA, Pao AC. Breaking the Cycle of Recurrent Calcium Stone Disease. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:164-176. [PMID: 36868731 PMCID: PMC9993408 DOI: 10.1053/j.akdh.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 03/05/2023]
Abstract
Calcium stones are common and recurrent in nature, yet few therapeutic tools are available for secondary prevention. Personalized approaches for stone prevention have been informed by 24-hour urine testing to guide dietary and medical interventions. However, current evidence is conflicting about whether an approach guided by 24-hour urine testing is more effective than a generic one. The available medications for stone prevention, namely thiazide diuretics, alkali, and allopurinol, are not always prescribed consistently, dosed correctly, or tolerated well by patients. New treatments on the horizon hold the promise of preventing calcium oxalate stones by degrading oxalate in the gut, reprogramming the gut microbiome to reduce oxalate absorption, or knocking down expression of enzymes involved in hepatic oxalate production. New treatments are also needed to target Randall's plaque, the root cause of calcium stone formation.
Collapse
Affiliation(s)
- Deepa A. Malieckal
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY
| | - Calyani Ganesan
- Stanford University School of Medicine, Department of Medicine, Palo Alto, CA
| | | | - Alan C. Pao
- Stanford University School of Medicine, Department of Medicine, Palo Alto, CA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| |
Collapse
|
17
|
Abstract
Oxalate homeostasis is maintained through a delicate balance between endogenous sources, exogenous supply and excretion from the body. Novel studies have shed light on the essential roles of metabolic pathways, the microbiome, epithelial oxalate transporters, and adequate oxalate excretion to maintain oxalate homeostasis. In patients with primary or secondary hyperoxaluria, nephrolithiasis, acute or chronic oxalate nephropathy, or chronic kidney disease irrespective of aetiology, one or more of these elements are disrupted. The consequent impairment in oxalate homeostasis can trigger localized and systemic inflammation, progressive kidney disease and cardiovascular complications, including sudden cardiac death. Although kidney replacement therapy is the standard method for controlling elevated plasma oxalate concentrations in patients with kidney failure requiring dialysis, more research is needed to define effective elimination strategies at earlier stages of kidney disease. Beyond well-known interventions (such as dietary modifications), novel therapeutics (such as small interfering RNA gene silencers, recombinant oxalate-degrading enzymes and oxalate-degrading bacterial strains) hold promise to improve the outlook of patients with oxalate-related diseases. In addition, experimental evidence suggests that anti-inflammatory medications might represent another approach to mitigating or resolving oxalate-induced conditions.
Collapse
Affiliation(s)
- Theresa Ermer
- Department of Surgery, Division of Thoracic Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Lama Nazzal
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Maria Clarissa Tio
- Division of Nephrology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sushrut Waikar
- Department of Medicine, Section of Nephrology, Boston University, Boston, MA, USA
| | - Peter S Aronson
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT, USA
| | - Felix Knauf
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT, USA.
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
18
|
Xiao Y, Yin S, Bai Y, Wang J, Cui J, Wang J. Association between urine cobalt and prevalence of kidney stones in Americans aged ≥ 20 years old. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:91061-91070. [PMID: 35882730 DOI: 10.1007/s11356-022-22200-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/20/2022] [Indexed: 02/08/2023]
Abstract
To determine whether urine cobalt (Co) is associated with the prevalence of kidney stones, we conducted a cross-sectional study of participants (≥ 20 years) involved in the National Health and Nutrition Examination Survey (NHANES) between 2007 and 2018. The urine Co level was divided into four groups: 0.02-0.22, 0.22-0.36, 0.36-0.58, and 0.58-37.40 μg/L. The independent correlation between urine Co and prevalence of kidney stones was determined by logistic regression analyses. A total of 10,744 participants aged over 20 years that were not pregnant were eligible. Among them, 1041 participants reported ever having developed kidney stones. Patients with kidney stones developed significantly higher urine Co than the non-stone participants. The kidney stone patients were more likely to have been smoking ≥ 100 cigarettes in life; have hypertension, diabetes, and cancer; and engage in heavy activity. Multivariate logistic regression indicated a significantly positive relationship between the urine Co level and occurrence of kidney stones (OR 1.059, 95% CI 1.018-1.102, P = 0.00430). Moreover, the outcome remained unchanged after some sophisticated factors were adjusted (OR 1.059, 95% CI 1.001-1.120, P = 0.04635), and kidney stones were significantly related to a higher level of Co (OR (95% CI) = 0.22-0.36 μg/L: 1.111 (0.869, 1.421); 0.36-0.58 μg/L: 1.392 (1.095, 1.770); 0.58-37.40 μg/L: 1.712 (1.351, 2.170), and P for trend < 0.00001). So, urine Co concentration is positively associated with the prevalence of kidney stones. However, more high-quality prospective studies are needed to elucidate the causal correlation between Co level and kidney stones.
Collapse
Affiliation(s)
- Yunfei Xiao
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, China
| | - Shan Yin
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, China.,Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yunjin Bai
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, China
| | - Jiahao Wang
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, China
| | - Jianwei Cui
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, China
| | - Jia Wang
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, China.
| |
Collapse
|
19
|
Zerdan MB, Moukarzel R, Naji NS, Bilen Y, Nagarajan A. The Urogenital System’s Role in Diseases: A Synopsis. Cancers (Basel) 2022; 14:cancers14143328. [PMID: 35884388 PMCID: PMC9319963 DOI: 10.3390/cancers14143328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The urinary tract microbiome has come under a lot of scrutiny, and this has led to the rejection of the pre-established concept of sterility in the urinary bladder. Microbial communities in the urinary tract have been implicated in the maintenance of health. Thus, alterations in their composition have also been associated with different urinary pathologies, such as urinary tract infections. For that reason, tackling the urinary microbiome of healthy individuals, as well as its involvement in disease through the proliferation of opportunistic pathogens, could open a potential field of study, leading to new insights into prevention, diagnosis, and treatment strategies for different diseases. Abstract The human microbiota contains ten times more microbial cells than human cells contained by the human body, constituting a larger genetic material than the human genome itself. Emerging studies have shown that these microorganisms represent a critical determinant in human health and disease, and the use of probiotic products as potential therapeutic interventions to modulate homeostasis and treat disease is being explored. The gut is a niche for the largest proportion of the human microbiota with myriad studies suggesting a strong link between the gut microbiota composition and disease development throughout the body. More specifically, there is mounting evidence on the relevance of gut microbiota dysbiosis in the development of urinary tract disease including urinary tract infections (UTIs), chronic kidney disease, and kidney stones. Fewer emerging reports, however, are suggesting that the urinary tract, which has long been considered ‘sterile’, also houses its unique microbiota that might have an important role in urologic health and disease. The implications of this new paradigm could potentially change the therapeutic perspective in urological disease.
Collapse
Affiliation(s)
- Maroun Bou Zerdan
- Department of Internal Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA;
- Department of Hematology and Oncology, Cleveland Clinic Florida, Weston, FL 33331, USA
| | - Rita Moukarzel
- Faculty of Medicine, Lebanese American University Medical Center, Lebanese American University, Beirut 1102, Lebanon;
| | - Nour Sabiha Naji
- Faculty of Medicine, American University of Beirut, Beirut 2020, Lebanon;
| | - Yara Bilen
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | - Arun Nagarajan
- Department of Hematology and Oncology, Cleveland Clinic Florida, Weston, FL 33331, USA
- Correspondence:
| |
Collapse
|
20
|
Kim HN, Kim JH, Chang Y, Yang D, Joo KJ, Cho YS, Park HJ, Kim HL, Ryu S. Gut microbiota and the prevalence and incidence of renal stones. Sci Rep 2022; 12:3732. [PMID: 35260689 PMCID: PMC8904816 DOI: 10.1038/s41598-022-07796-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/15/2022] [Indexed: 11/09/2022] Open
Abstract
The role of the gut microbiome in the development of renal stone diseases has not been well characterized. This study focused on the taxonomic and functional profiles of gut microbiomes according to the prevalence and incidence of nephrolithiasis. Stool samples from 915 Korean adults were collected at baseline. Participants were followed for a median of 4.0 years. We evaluated the biodiversity of the gut microbiota and taxonomic profiles associated with nephrolithiasis status, using 16S rRNA gene sequencing. Nephrolithiasis status was categorized into three groups: control (no-stone at both baseline and follow-up visits), incidental nephrolithiasis, and prevalent nephrolithiasis. Compared to the control and incidental nephrolithiasis, the prevalent nephrolithiasis showed a reduced evenness in alpha diversity. Nephrolithiasis was associated with a reduced abundance of some key taxa involved in short-chain fatty acid production. Moreover, the abundance of Bifidobacterium, which possess oxalate-degrading ability, was higher in the control. Conversely, there was no significant difference in the bacterial composition between the incidental and prevalent nephrolithiasis. In our study with repeated nephrolithiasis measurements, prevalent renal stones were associated with an altered gut microbiota composition compared to the control. Besides the known oxalate degradation pathway, other functional pathways inferred in this study require further investigation.
Collapse
Affiliation(s)
- Han-Na Kim
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Jae Heon Kim
- Department of Urology, Soonchunhyang University Seoul Hospital, Soonchunhyang University Medical College, Seoul, Republic of Korea
| | - Yoosoo Chang
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea. .,Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea. .,Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Samsung Main Building B2, 250, Taepyung-ro 2ga, Jung-gu, Seoul, 04514, Republic of Korea.
| | - Dongmin Yang
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Urology, Soonchunhyang University Seoul Hospital, Soonchunhyang University Medical College, Seoul, Republic of Korea
| | - Kwan Joong Joo
- Department of Urology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young-Sam Cho
- Department of Urology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Heung Jae Park
- Department of Urology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyung-Lae Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Seungho Ryu
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.,Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Samsung Main Building B2, 250, Taepyung-ro 2ga, Jung-gu, Seoul, 04514, Republic of Korea
| |
Collapse
|
21
|
Dong F, Jiang S, Tang C, Wang X, Ren X, Wei Q, Tian J, Hu W, Guo J, Fu X, Liu L, Patzak A, Persson PB, Gao F, Lai EY, Zhao L. Trimethylamine N-oxide promotes hyperoxaluria-induced calcium oxalate deposition and kidney injury by activating autophagy. Free Radic Biol Med 2022; 179:288-300. [PMID: 34767921 DOI: 10.1016/j.freeradbiomed.2021.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
Calcium oxalate (CaOx) is the most common component of kidney stones. Oxidative stress, inflammation and autophagy-induced cell death are the major causes of CaOx crystal deposition and CaOx crystal deposition can further lead to kidney injury. Trimethylamine N-oxide (TMAO), a gut microbiota-derived metabolite, plays an important role in the pathogenesis of many diseases, such as atherosclerosis, diabetes and chronic kidney disease, but the effect of TMAO on hyperoxaluria-induced CaOx crystal deposition and kidney injury remains unknown. We hypothesize that TMAO aggravates CaOx crystal deposition via promoting CaOx-mediated cell death. C57Bl/6 mice were given high-oxalate diet as a model of hyperoxaluria. TMAO was provided via drinking water. Serum TMAO levels increased 15 days after CaOx treatment (6.30 ± 0.17 μmol/L vs. 34.65 ± 8.95 μmol/L). High-oxalate diet induced inflammation, CaOx deposition and kidney injury, which TMAO aggravated. In accordance, TMAO intensified high-oxalate diet induced oxidative stress, autophagy and apoptosis. Moreover, TMAO enhanced CaOx crystal adhesion to HK-2 cells and reduced cell viability (from 88.9 ± 1.6% to 75.0 ± 2.7%). Protein kinase R-like endoplasmic reticulum kinase (PERK) may mediate these TMAO effects, as TMAO promoted PERK phosphorylation. Consistently, PERK knockdown alleviated TMAO-evoked CaOx-autophagy, apoptosis and oxidative stress in HK-2 cells. In conclusion, TMAO can aggravate hyperoxaluria-induced kidney injury by triggering the PERK/ROS pathway, which enhances autophagy, apoptosis and inflammation, and facilitates CaOx crystal deposition in renal tubular cells.
Collapse
Affiliation(s)
- Fang Dong
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Shan Jiang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaohua Wang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaoqiu Ren
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jiong Tian
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Weipeng Hu
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jie Guo
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiaodong Fu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Linlin Liu
- Durbrain Medical Laboratory, Hangzhou, 310000, China
| | - Andreas Patzak
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
| | - Pontus B Persson
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
| | - Fei Gao
- Durbrain Medical Laboratory, Hangzhou, 310000, China.
| | - En Yin Lai
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
| | - Liang Zhao
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
| |
Collapse
|
22
|
|
23
|
Wigner P, Bijak M, Saluk-Bijak J. Probiotics in the Prevention of the Calcium Oxalate Urolithiasis. Cells 2022; 11:cells11020284. [PMID: 35053400 PMCID: PMC8773937 DOI: 10.3390/cells11020284] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/18/2022] Open
Abstract
Nephrolithiasis ranks third among urological diseases in terms of prevalence, making up about 15% of cases. The continued increase in the incidence of nephrolithiasis is most probably due to changes in eating habits (high protein, sodium, and sugar diets) and lifestyle (reduced physical activity) in all developed countries. Some 80% of all kidney stones cases are oxalate urolithiasis, which is also characterized by the highest risk of recurrence. Frequent relapses of nephrolithiasis contribute to severe complications and high treatment costs. Unfortunately, there is no known effective way to prevent urolithiasis at present. In cases of diet-related urolithiasis, dietary changes may prevent recurrence. However, in some patients, the condition is unrelated to diet; in such cases, there is evidence to support the use of stone-related medications. Interestingly, a growing body of evidence indicates the potential of the microbiome to reduce the risk of developing renal colic. Previous studies have primarily focused on the use of Oxalobacterformigenes in patients with urolithiasis. Unfortunately, this bacterium is not an ideal probiotic due to its antibiotic sensitivity and low pH. Therefore, subsequent studies sought to find bacteria which are capable of oxalate degradation, focusing on well-known probiotics including Lactobacillus and Bifidobacterium strains, Eubacterium lentum, Enterococcus faecalis, and Escherichia coli.
Collapse
Affiliation(s)
- Paulina Wigner
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland;
- Correspondence:
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland;
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland;
| |
Collapse
|
24
|
Finger M, Finger E, Bellucci A, Malieckal DA. Medical management for the prevention of kidney stones. Postgrad Med J 2021; 99:postgradmedj-2021-140971. [PMID: 34930814 DOI: 10.1136/postgradmedj-2021-140971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/23/2021] [Indexed: 12/17/2022]
Abstract
The alarming fact is that approximately one out of every 10 of us will have a kidney stone during our lifetime. The increasing prevalence and associated costs of kidney stones have resulted in it being one of the most commonly encountered and impactful medical conditions. Contributing factors include, but are not limited to, diet, climate, genetics, medications, activity and underlying medical conditions. Symptoms generally parallel stone size. Treatment varies from supportive to procedural (invasive and non-invasive). Prevention remains the best way to avoid this condition especially given the high recurrence rate. First time stone formers require counselling regarding dietary adjustments. Certain risk factors ultimately require a more in-depth metabolic investigation, especially if stones are recurrent. Ultimately, management is defined by stone composition. Where appropriate, we review both pharmacologic and non-pharmacologic options. Pivotal to successful prevention is patient education and the encouragement of compliance with the appropriate regimen.
Collapse
Affiliation(s)
- Mark Finger
- Medicine-Nephrology, Northwell Health, Great Neck, New York, USA
| | - Evan Finger
- Medicine, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
25
|
Forty Years of Oxalobacter formigenes, a Gutsy Oxalate-Degrading Specialist. Appl Environ Microbiol 2021; 87:e0054421. [PMID: 34190610 DOI: 10.1128/aem.00544-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Oxalobacter formigenes, a unique anaerobic bacterium that relies solely on oxalate for growth, is a key oxalate-degrading bacterium in the mammalian intestinal tract. Degradation of oxalate in the gut by O. formigenes plays a critical role in preventing renal toxicity in animals that feed on oxalate-rich plants. The role of O. formigenes in reducing the risk of calcium oxalate kidney stone disease and oxalate nephropathy in humans is less clear, in part due to difficulties in culturing this organism and the lack of studies which have utilized diets in which the oxalate content is controlled. Herein, we review the literature on the 40th anniversary of the discovery of O. formigenes, with a focus on its biology, its role in gut oxalate metabolism and calcium oxalate kidney stone disease, and potential areas of future research. Results from ongoing clinical trials utilizing O. formigenes in healthy volunteers and in patients with primary hyperoxaluria type 1 (PH1), a rare but severe form of calcium oxalate kidney stone disease, are also discussed. Information has been consolidated on O. formigenes strains and best practices to culture this bacterium, which should serve as a good resource for researchers.
Collapse
|
26
|
Liang S, Li L, Chen D, Liang D, Xu F, Cheng Z, Abuduwupuer Z, Zhang C, Zhang M, Zeng C. Secondary Oxalate Nephropathy: Causes and Clinicopathological Characteristics of a Case Series. Nephron Clin Pract 2021; 145:684-691. [PMID: 34237750 DOI: 10.1159/000517072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/03/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Secondary oxalate nephropathy (OxN) is associated with a variety of causes and has not been well characterized in Chinese population. To investigate the etiology, clinicopathological features, and outcomes of secondary OxN, we report a case series from a single center in China. METHODS A retrospective analysis of 68 patients diagnosed with secondary OxN by renal biopsy from January 2013 to February 2019 in Jinling Hospital was performed. RESULTS Secondary OxN accounted for 0.23% of the renal biopsies and 2.31% of patients who received renal biopsies due to acute kidney injury (AKI). A total of 49 men and 19 women with an average age of 51.6 ± 11.8 years were enrolled. The most common cause was iatrogenic medication, followed by oxalate-rich diet and industry exposure. Stage 1, 2, and 3 AKI and AKI on chronic kidney disease (ACKD) were found in 4.4, 8.8, 69.1, and 17.6% of the patients, respectively. The peak serum creatinine during hospitalization was 8.62 ± 4.67 mg/dL. The median urinary oxalate excretion was 51.5 (23.2-147.1) mg/24 h. Kidney biopsy showed extensive calcium oxalate crystal deposits with acute tubulointerstitial nephritis. Thirty-four patients (50.0%) required renal replacement therapy. At the end of a follow-up that lasted 8.7 (0.1-72.1) months, 81.0% of patients achieved renal function recovery in 50 (14-432) days. Patients with renal function recovery had a lower rate of ACKD, a higher level of hemoglobin, a lower level of urine lysozyme, and a lower degree of interstitial fibrosis/tubular atrophy, interstitial inflammation, and global glomerulosclerosis than those in the nonrecovery group. CONCLUSIONS In this case series of secondary OxN, the most common cause was iatrogenic medication, and it presented with AKI or ACKD. Half of the patients required renal replacement therapy, and in most of them, the renal function was reversible. Renal biopsy played an important role in diagnosis and prognosis evaluation.
Collapse
Affiliation(s)
- Shaoshan Liang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Lijuan Li
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Dacheng Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Dandan Liang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Feng Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhen Cheng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zulihumaer Abuduwupuer
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Changming Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Caihong Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
27
|
Ma Q, Grigorescu M, Schreiber A, Kettritz R, Lindenmeyer M, Anders HJ, Steiger S. Genetic Background but Not Intestinal Microbiota After Co-Housing Determines Hyperoxaluria-Related Nephrocalcinosis in Common Inbred Mouse Strains. Front Immunol 2021; 12:673423. [PMID: 33968083 PMCID: PMC8100042 DOI: 10.3389/fimmu.2021.673423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
Calcium oxalate (CaOx) crystal formation, aggregation and growth is a common cause of kidney stone disease and nephrocalcinosis-related chronic kidney disease (CKD). Genetically modified mouse strains are frequently used as an experimental tool in this context but observed phenotypes may also relate to the genetic background or intestinal microbiota. We hypothesized that the genetic background or intestinal microbiota of mice determine CaOx crystal deposition and thus the outcome of nephrocalcinosis. Indeed, Casp1-/-, Cybb-/- or Casp1-/-/Cybb-/- knockout mice on a 129/C57BL/6J (B6J) background that were fed an oxalate-rich diet for 14 days did neither encounter intrarenal CaOx crystal deposits nor nephrocalcinosis-related CKD. To test our assumption, we fed C57BL/6N (B6N), 129, B6J and Balb/c mice an oxalate-rich diet for 14 days. Only B6N mice displayed CaOx crystal deposits and developed CKD associated with tubular injury, inflammation and interstitial fibrosis. Intrarenal mRNA expression profiling of 64 known nephrocalcinosis-related genes revealed that healthy B6N mice had lower mRNA levels of uromodulin (Umod) compared to the other three strains. Feeding an oxalate-rich diet caused an increase in uromodulin protein expression and CaOx crystal deposition in the kidney as well as in urinary uromodulin excretion in B6N mice but not 129, B6J and Balb/c mice. However, backcrossing 129 mice on a B6N background resulted in a gradual increase in CaOx crystal deposits from F2 to F7, of which all B6N/129 mice from the 7th generation developed CaOx-related nephropathy similar to B6N mice. Co-housing experiments tested for a putative role of the intestinal microbiota but B6N co-housed with 129 mice or B6N/129 (3rd and 6th generation) mice did not affect nephrocalcinosis. In summary, genetic background but not the intestinal microbiome account for strain-specific crystal formation and, the levels of uromodulin secretion may contribute to this phenomenon. Our results imply that only littermate controls of the identical genetic background strain are appropriate when performing knockout mouse studies in this context, while co-housing is optional.
Collapse
Affiliation(s)
- Qiuyue Ma
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Melissa Grigorescu
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Adrian Schreiber
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Ralph Kettritz
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Maja Lindenmeyer
- III. Department of Medicine University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Stefanie Steiger
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
28
|
Chen F, Bao X, Liu S, Ye K, Xiang S, Yu L, Xu Q, Zhang Y, Wang X, Zhu X, Ying J, Shen Y, Ji W, Si S. Gut microbiota affect the formation of calcium oxalate renal calculi caused by high daily tea consumption. Appl Microbiol Biotechnol 2021; 105:789-802. [PMID: 33404827 DOI: 10.1007/s00253-020-11086-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 01/14/2023]
Abstract
Kidney stones are a common and frequently occurring disease worldwide. Stones can cause urinary tract obstruction, pain, haematuria, and other symptoms. In this study, the relationship between calcium oxalate renal calculi and gut microbiota was considered. The dietary habits of 30 patients with calcium oxalate kidney stones and 30 healthy people were investigated. The 16S rDNA sequences and short-chain fatty acids (SCFAs) in their stool samples were analysed. We identified 5 genera of the gut microbiota as biomarkers for calcium oxalate renal calculi, namely, Bacteroides, Phascolarctobacterium, Faecalibacterium, Akkermansia, and Lactobacillus, with a receiver operating characteristic (ROC) curve value of 0.871 (95% confidence interval (CI) 0.785-0.957). Phascolarctobacterium and Faecalibacterium showed a positive relationship with SCFA synthesis to reduce the risk of kidney stones. Meanwhile, according to the analysis, Lactobacillus spp. made the largest contribution (79%) to prevent kidney stones caused by tea consumption, since tea offers the great parts of oxalate in kidney stone formation. Three strains of Lactobacillus spp. were isolated from stools of a healthy person with a high level of tea consumption who did not suffer from kidney stones. All these strains survived in the colon with supplementation of high concentrations of tea and efficiently degraded oxalic acid (Ca. 50%) in an in vitro colonic simulation. Therefore, a suitable adjustment of the gut microbiota or SCFA concentration enhanced the degradation of oxalate from food, which can be applied to prevent the formation of calcium oxalate renal calculi caused by tea. KEY POINTS: • Five genera, including Lactobacillus, were identified as biomarkers for calcium oxalate renal calculi. • Lactobacillus is a potential gut bacterium associated with preventing kidney stone formation. • Isolated Lactobacillus strains have the ability to degrade oxalic acid in vitro.
Collapse
Affiliation(s)
- Feng Chen
- Department of Urology, Jiaxing Ivy Hospital, Jiaxing, Zhejiang, People's Republic of China
| | - Xuan Bao
- School of Food Science and Bioengineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
| | - Shiyu Liu
- School of Food Science and Bioengineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
| | - Kun Ye
- School of Food Science and Bioengineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
| | - Shasha Xiang
- School of Food Science and Bioengineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
| | - Liting Yu
- Department of Urology, China Coast Guard of the Chinese People Armed Police Force Corps Hospital, Jiaxing, Zhejiang, People's Republic of China
| | - Qingkang Xu
- Department of Urology, Jiaxing Ivy Hospital, Jiaxing, Zhejiang, People's Republic of China
| | - Yuehong Zhang
- Department of Urology, China Coast Guard of the Chinese People Armed Police Force Corps Hospital, Jiaxing, Zhejiang, People's Republic of China
| | - Xiu Wang
- Nanhu College of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Xuan Zhu
- School of Food Science and Bioengineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China.
| | - Jian Ying
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Yubiao Shen
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang, People's Republic of China
| | - Wei Ji
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang, People's Republic of China
| | - Shufeng Si
- Shandong Zhongke-jiayi Bioengineering Co., Ltd, Weifang, People's Republic of China
| |
Collapse
|
29
|
Crivelli JJ, Mitchell T, Knight J, Wood KD, Assimos DG, Holmes RP, Fargue S. Contribution of Dietary Oxalate and Oxalate Precursors to Urinary Oxalate Excretion. Nutrients 2020; 13:nu13010062. [PMID: 33379176 PMCID: PMC7823532 DOI: 10.3390/nu13010062] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 02/07/2023] Open
Abstract
Kidney stone disease is increasing in prevalence, and the most common stone composition is calcium oxalate. Dietary oxalate intake and endogenous production of oxalate are important in the pathophysiology of calcium oxalate stone disease. The impact of dietary oxalate intake on urinary oxalate excretion and kidney stone disease risk has been assessed through large cohort studies as well as smaller studies with dietary control. Net gastrointestinal oxalate absorption influences urinary oxalate excretion. Oxalate-degrading bacteria in the gut microbiome, especially Oxalobacter formigenes, may mitigate stone risk through reducing net oxalate absorption. Ascorbic acid (vitamin C) is the main dietary precursor for endogenous production of oxalate with several other compounds playing a lesser role. Renal handling of oxalate and, potentially, renal synthesis of oxalate may contribute to stone formation. In this review, we discuss dietary oxalate and precursors of oxalate, their pertinent physiology in humans, and what is known about their role in kidney stone disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Ross P. Holmes
- Correspondence: ; Tel.: +1-(205)-996-8765; Fax: +1-(205)-934-4933
| | | |
Collapse
|
30
|
Souai N, Zidi O, Mosbah A, Kosai I, Manaa JE, Mokhtar NB, Asimakis E, Stathopoulou P, Cherif A, Tsiamis G, Kouidhi S. Impact of the Post-Transplant Period and Lifestyle Diseases on Human Gut Microbiota in Kidney Graft Recipients. Microorganisms 2020; 8:microorganisms8111724. [PMID: 33158078 PMCID: PMC7694191 DOI: 10.3390/microorganisms8111724] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Gaining long-term graft function and patient life quality remain critical challenges following kidney transplantation. Advances in immunology, gnotobiotics, and culture-independent molecular techniques have provided growing insights into the complex relationship of the microbiome and the host. However, little is known about the over time-shift of the gut microbiota in the context of kidney transplantation and its impact on both graft and health stability. Here we aimed to characterize the structure of gut microbiota within stable kidney graft recipients. We enrolled forty kidney transplant patients after at least three months of transplantation and compared them to eighteen healthy controls. The overall microbial community structure of the kidney transplanted group was clearly different from control subjects. We found lower relative abundances of Actinobacteria, Bacteroidetes, and Verrucomicrobia within the patient group and a higher abundance of Proteobacteria compared to the control group. Both richness and Shannon diversity indexes were significantly lower in the kidney graft recipients than in healthy controls. Post-graft period was positively correlated with the relative abundance of the Proteobacteria phylum, especially Escherichia.Shigella genus. Interestingly, only Parabacteroides was found to significantly differentiate patients that were not suffering from lifestyle diseases and those who suffer from post-graft complications. Furthermore, network analysis showed that the occurrence of lifestyle diseases was significantly linked with a higher number of negative interactions of Sutterella and Succinivibrio genera within patients. This study characterizes gut microbiome fluctuation in stable kidney transplant patients after a long post-allograft period. Analysis of fecal microbiota could be useful for nephrologists as a new clinical tool that can improve kidney allograft monitoring and outcomes.
Collapse
Affiliation(s)
- Nessrine Souai
- Laboratory of Biotechnology and Valorisation of Bio-GeoRessources, Higher Institute of Biotechnology of Sidi Thabet, BiotechPole of Sidi Thabet, University of Manouba, Ariana 2020, Tunisia; (N.S.); (O.Z.); (A.M.); (A.C.)
- Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, Farhat Hachad Universitary Campus, Rommana 1068, Tunis, Tunisia
| | - Oumaima Zidi
- Laboratory of Biotechnology and Valorisation of Bio-GeoRessources, Higher Institute of Biotechnology of Sidi Thabet, BiotechPole of Sidi Thabet, University of Manouba, Ariana 2020, Tunisia; (N.S.); (O.Z.); (A.M.); (A.C.)
- Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, Farhat Hachad Universitary Campus, Rommana 1068, Tunis, Tunisia
| | - Amor Mosbah
- Laboratory of Biotechnology and Valorisation of Bio-GeoRessources, Higher Institute of Biotechnology of Sidi Thabet, BiotechPole of Sidi Thabet, University of Manouba, Ariana 2020, Tunisia; (N.S.); (O.Z.); (A.M.); (A.C.)
| | - Imen Kosai
- Unit of Organ Transplant Military Training Hospital, Mont Fleury 1008, Tunis, Tunisia; (I.K.); (J.E.M.)
| | - Jameleddine El Manaa
- Unit of Organ Transplant Military Training Hospital, Mont Fleury 1008, Tunis, Tunisia; (I.K.); (J.E.M.)
| | - Naima Bel Mokhtar
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St, 30100 Agrinio, Greece; (N.B.M.); (E.A.); (P.S.); (G.T.)
| | - Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St, 30100 Agrinio, Greece; (N.B.M.); (E.A.); (P.S.); (G.T.)
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St, 30100 Agrinio, Greece; (N.B.M.); (E.A.); (P.S.); (G.T.)
| | - Ameur Cherif
- Laboratory of Biotechnology and Valorisation of Bio-GeoRessources, Higher Institute of Biotechnology of Sidi Thabet, BiotechPole of Sidi Thabet, University of Manouba, Ariana 2020, Tunisia; (N.S.); (O.Z.); (A.M.); (A.C.)
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St, 30100 Agrinio, Greece; (N.B.M.); (E.A.); (P.S.); (G.T.)
| | - Soumaya Kouidhi
- Laboratory of Biotechnology and Valorisation of Bio-GeoRessources, Higher Institute of Biotechnology of Sidi Thabet, BiotechPole of Sidi Thabet, University of Manouba, Ariana 2020, Tunisia; (N.S.); (O.Z.); (A.M.); (A.C.)
- Correspondence: ; Tel.: +216-95-694-135
| |
Collapse
|
31
|
Dietary Oxalate Intake and Kidney Outcomes. Nutrients 2020; 12:nu12092673. [PMID: 32887293 PMCID: PMC7551439 DOI: 10.3390/nu12092673] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 12/16/2022] Open
Abstract
Oxalate is both a plant-derived molecule and a terminal toxic metabolite with no known physiological function in humans. It is predominantly eliminated by the kidneys through glomerular filtration and tubular secretion. Regardless of the cause, the increased load of dietary oxalate presented to the kidneys has been linked to different kidney-related conditions and injuries, including calcium oxalate nephrolithiasis, acute and chronic kidney disease. In this paper, we review the current literature on the association between dietary oxalate intake and kidney outcomes.
Collapse
|
32
|
Nimesh S, Ashwlayan VD, Rani R, Prakash O. Advantages of Herbal Over Allopathic Medicine in the Management of Kidney and Urinary Stones Disease. BORNEO JOURNAL OF PHARMACY 2020. [DOI: 10.33084/bjop.v3i3.1415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Kidney and urinary stone disease (Nephrolithiasis and urolithiasis) are the condition where urinary stones or calculi are formed in the urinary tract. The problem of urinary stones is very ancient; these stones are found in all parts of the urinary tract, kidney, ureters, and the urinary bladder and may vary considerably in size. It is a common disease estimated to occur in approximately 12% of the population, with a recurrence rate of 70-81% in males and 47-60% in females. The treatment of kidney and urinary stone diseases such as a western (allopathy) medicine and surgery is now in trends. However, most people preferred plant-based (herbal) therapy because of the overuse of allopathic drugs, which results in a higher incidence rate of adverse or severe side effects. Therefore, people every year turn to herbal therapy because they believe plant-based medicine is free from undesirable side effects, although herbal medicines are generally considered to be safe and effective. In the present article, an attempt has been made to emphasize an herbal therapy is better than allopathic therapy for the management of the kidney and urinary stone disease.
Collapse
Affiliation(s)
| | | | - Rubi Rani
- NKBR College of Pharmacy and Research Centre
| | | |
Collapse
|
33
|
Gupta S, Singh Kanwar S. The influence of dysbiosis on kidney stones that risk up renal cell carcinoma (RCC). Semin Cancer Biol 2020; 70:134-138. [PMID: 32569823 DOI: 10.1016/j.semcancer.2020.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 01/11/2023]
Abstract
Kidney stone is a common urological condition, the prevalence and incidence of which has escalated in the last few years due to dietary habits and other related medical conditions such as obesity and diabetes mellitus. It is a chronic disease which leads to loss of kidney function(s) and nephrectomy. Chronic kidney stone disease has been shown to be associated with transitional cell carcinoma (TCC) or renal cell carcinoma (RCC) and kidney tumors have been found to be more frequent among patients with kidney stones. Although hyperoxaluria is mainly responsible for kidney stone formation, dysbiosis of the gut and urinary tract microbiome may in part contribute to kidney stone disease. Dysbiosis of the gut and urinary tract microbiome have been linked to kidney stone diseases with both gain and loss of function. The review provides a detailed study of how the variations in the microbiome of the human gut and urinary tract result in the chronic kidney stone diseases which are associated with increased papillary RCC risks.
Collapse
Affiliation(s)
- Shruti Gupta
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171 005 India.
| | - Shamsher Singh Kanwar
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171 005 India.
| |
Collapse
|
34
|
Ferraro PM, Bargagli M, Trinchieri A, Gambaro G. Risk of Kidney Stones: Influence of Dietary Factors, Dietary Patterns, and Vegetarian-Vegan Diets. Nutrients 2020; 12:E779. [PMID: 32183500 PMCID: PMC7146511 DOI: 10.3390/nu12030779] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/21/2022] Open
Abstract
Nephrolithiasis is a common medical condition influenced by multiple environmental factors, including diet. Since nutritional habits play a relevant role in the genesis and recurrence of kidney stones disease, dietary manipulation has become a fundamental tool for the medical management of nephrolithiasis. Dietary advice aims to reduce the majority of lithogenic risk factors, reducing the supersaturation of urine, mainly for calcium oxalate, calcium phosphate, and uric acid. For this purpose, current guidelines recommend increasing fluid intake, maintaining a balanced calcium intake, reducing dietary intake of sodium and animal proteins, and increasing intake of fruits and fibers. In this review, we analyzed the effects of each dietary factor on nephrolithiasis incidence and recurrence rate. Available scientific evidence agrees on the harmful effects of high meat/animal protein intake and low calcium diets, whereas high content of fruits and vegetables associated with a balanced intake of low-fat dairy products carries the lowest risk for incident kidney stones. Furthermore, a balanced vegetarian diet with dairy products seems to be the most protective diet for kidney stone patients. Since no study prospectively examined the effects of vegan diets on nephrolithiasis risk factors, more scientific work should be made to define the best diet for different kidney stone phenotypes.
Collapse
Affiliation(s)
- Pietro Manuel Ferraro
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (P.M.F.); (M.B.)
- U.O.C. Nefrologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| | - Matteo Bargagli
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (P.M.F.); (M.B.)
| | | | - Giovanni Gambaro
- Division of Nephrology and Dialysis, Department of Medicine, University of Verona, P.le A. Stefani 1, 37126 Verona, Italy
| |
Collapse
|
35
|
Calcium Oxalate Nephrolithiasis and Gut Microbiota: Not just a Gut-Kidney Axis. A Nutritional Perspective. Nutrients 2020; 12:nu12020548. [PMID: 32093202 PMCID: PMC7071363 DOI: 10.3390/nu12020548] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Recent studies have shown that patients with kidney stone disease, and particularly calcium oxalate nephrolithiasis, exhibit dysbiosis in their fecal and urinary microbiota compared with controls. The alterations of microbiota go far beyond the simple presence and representation of Oxalobacter formigenes, a well-known symbiont exhibiting a marked capacity of degrading dietary oxalate and stimulating oxalate secretion by the gut mucosa. Thus, alterations of the intestinal microbiota may be involved in the pathophysiology of calcium kidney stones. However, the role of nutrition in this gut-kidney axis is still unknown, even if nutritional imbalances, such as poor hydration, high salt, and animal protein intake and reduced fruit and vegetable intake, are well-known risk factors for kidney stones. In this narrative review, we provide an overview of the gut-kidney axis in nephrolithiasis from a nutritional perspective, summarizing the evidence supporting the role of nutrition in the modulation of microbiota composition, and their relevance for the modulation of lithogenic risk.
Collapse
|