1
|
Song J, Chen Y, Chen Y, Qiu M, Xiang W, Ke B, Fang X. DKK3 promotes oxidative stress injury and fibrosis in HK-2 cells by activating NOX4 via β-catenin/TCF4 signaling. Mol Cell Biochem 2024; 479:1231-1241. [PMID: 37368156 DOI: 10.1007/s11010-023-04789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Oxidative stress and fibrosis may accelerate the progression of chronic kidney disease (CKD). DKK3 is related to regulating renal fibrosis and CKD. However, the molecular mechanism of DKK3 in regulating oxidative stress and fibrosis during CKD development has not been clarified, which deserves to be investigated. Human proximal tubule epithelial cells (HK-2 cells) were treated with H2O2 to establish a cell model of renal fibrosis. The mRNA and protein expressions were analyzed using qRT-PCR and western blot, respectively. Cell viability and apoptosis were evaluated using MTT assay and flow cytometry, respectively. ROS production was estimated using DCFH-DA. The interactions among TCF4, β-catenin and NOX4 were validated using luciferase activity assay, ChIP and Co-IP. Herein, our results revealed that DKK3 was highly expressed in HK-2 cells treated with H2O2. DKK3 depletion increased H2O2-treated HK-2 cell viability and reduced cell apoptosis, oxidative stress, and fibrosis. Mechanically, DKK3 promoted formation of the β-catenin/TCF4 complex, and activated NOX4 transcription. Upregulation of NOX4 or TCF4 weakened the inhibitory effect of DKK3 knockdown on oxidative stress and fibrosis in H2O2-stimulated HK-2 cells. All our results suggested that DKK3 accelerated oxidative stress and fibrosis through promoting β-catenin/TCF4 complex-mediated activation of NOX4 transcription, which could lead to novel molecules and therapeutic targets for CKD.
Collapse
Affiliation(s)
- Jianling Song
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Yanxia Chen
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Yan Chen
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Minzi Qiu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Wenliu Xiang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Ben Ke
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| | - Xiangdong Fang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
2
|
Niculae A, Gherghina ME, Peride I, Tiglis M, Nechita AM, Checherita IA. Pathway from Acute Kidney Injury to Chronic Kidney Disease: Molecules Involved in Renal Fibrosis. Int J Mol Sci 2023; 24:14019. [PMID: 37762322 PMCID: PMC10531003 DOI: 10.3390/ijms241814019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Acute kidney injury (AKI) is one of the main conditions responsible for chronic kidney disease (CKD), including end-stage renal disease (ESRD) as a long-term complication. Besides short-term complications, such as electrolyte and acid-base disorders, fluid overload, bleeding complications or immune dysfunctions, AKI can develop chronic injuries and subsequent CKD through renal fibrosis pathways. Kidney fibrosis is a pathological process defined by excessive extracellular matrix (ECM) deposition, evidenced in chronic kidney injuries with maladaptive architecture restoration. So far, cited maladaptive kidney processes responsible for AKI to CKD transition were epithelial, endothelial, pericyte, macrophage and fibroblast transition to myofibroblasts. These are responsible for smooth muscle actin (SMA) synthesis and abnormal renal architecture. Recently, AKI progress to CKD or ESRD gained a lot of interest, with impressive progression in discovering the mechanisms involved in renal fibrosis, including cellular and molecular pathways. Risk factors mentioned in AKI progression to CKD are frequency and severity of kidney injury, chronic diseases such as uncontrolled hypertension, diabetes mellitus, obesity and unmodifiable risk factors (i.e., genetics, older age or gender). To provide a better understanding of AKI transition to CKD, we have selected relevant and updated information regarding the risk factors responsible for AKIs unfavorable long-term evolution and mechanisms incriminated in the progression to a chronic state, along with possible therapeutic approaches in preventing or delaying CKD from AKI.
Collapse
Affiliation(s)
- Andrei Niculae
- Department of Nephrology, Clinical Department No. 3, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mihai-Emil Gherghina
- Department of Nephrology, Ilfov County Emergency Clinical Hospital, 022104 Bucharest, Romania
| | - Ileana Peride
- Department of Nephrology, Clinical Department No. 3, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mirela Tiglis
- Department of Anesthesia and Intensive Care, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania
| | - Ana-Maria Nechita
- Department of Nephrology, “St. John” Emergency Clinical Hospital, 042122 Bucharest, Romania
| | | |
Collapse
|
3
|
Abstract
Intercellular communication by Wnt proteins governs many essential processes during development, tissue homeostasis and disease in all metazoans. Many context-dependent effects are initiated in the Wnt-producing cells and depend on the export of lipidated Wnt proteins. Although much focus has been on understanding intracellular Wnt signal transduction, the cellular machinery responsible for Wnt secretion became better understood only recently. After lipid modification by the acyl-transferase Porcupine, Wnt proteins bind their dedicated cargo protein Evi/Wntless for transport and secretion. Evi/Wntless and Porcupine are conserved transmembrane proteins, and their 3D structures were recently determined. In this Review, we summarise studies and structural data highlighting how Wnts are transported from the ER to the plasma membrane, and the role of SNX3-retromer during the recycling of its cargo receptor Evi/Wntless. We also describe the regulation of Wnt export through a post-translational mechanism and review the importance of Wnt secretion for organ development and cancer, and as a future biomarker.
Collapse
Affiliation(s)
- Lucie Wolf
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Ferroptosis and renal fibrosis: A new target for the future (Review). Exp Ther Med 2022; 25:13. [PMID: 36561607 PMCID: PMC9748635 DOI: 10.3892/etm.2022.11712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022] Open
Abstract
Ferroptosis is a type of non-apoptotic controlled cell death triggered by oxidative stress and iron-dependent lipid peroxidation. Ferroptosis is regulated by signalling pathways that are associated with metabolism, including glutathione peroxidase 4 dysfunction, the cystine/glutamate antiporter system, lipid peroxidation and inadequate iron metabolism. Ferroptosis is associated with renal fibrosis; however, further research is required to understand the specific molecular mechanisms involved. The present review aimed to discuss the known molecular mechanisms of ferroptosis and outline the biological reactions that occur during renal fibrosis that may be associated with ferroptosis. Further investigation into the association between ferroptosis and renal fibrosis may lead to the development of novel treatment methods.
Collapse
|
5
|
Zhang B, Chen X, Ru F, Gan Y, Li B, Xia W, Dai G, He Y, Chen Z. Liproxstatin-1 attenuates unilateral ureteral obstruction-induced renal fibrosis by inhibiting renal tubular epithelial cells ferroptosis. Cell Death Dis 2021; 12:843. [PMID: 34511597 PMCID: PMC8435531 DOI: 10.1038/s41419-021-04137-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/16/2021] [Accepted: 09/02/2021] [Indexed: 12/23/2022]
Abstract
Renal fibrosis is a common pathological process that occurs with diverse etiologies in chronic kidney disease. However, its regulatory mechanisms have not yet been fully elucidated. Ferroptosis is a form of non-apoptotic regulated cell death driven by iron-dependent lipid peroxidation. It is currently unknown whether ferroptosis is initiated during unilateral ureteral obstruction (UUO)-induced renal fibrosis and its role has not been determined. In this study, we demonstrated that ureteral obstruction induced ferroptosis in renal tubular epithelial cells (TECs) in vivo. The ferroptosis inhibitor liproxstatin-1 (Lip-1) reduced iron deposition, cell death, lipid peroxidation, and inhibited the downregulation of GPX4 expression induced by UUO, ultimately inhibiting ferroptosis in TECs. We found that Lip-1 significantly attenuated UUO-induced morphological and pathological changes and collagen deposition of renal fibrosis in mice. In addition, Lip-1 attenuated the expression of profibrotic factors in the UUO model. In vitro, we used RSL3 treatment and knocked down of GPX4 level by RNAi in HK2 cells to induce ferroptosis. Our results indicated HK2 cells secreted various profibrotic factors during ferroptosis. Lip-1 was able to inhibit ferroptosis and thereby inhibit the secretion of the profibrotic factors during the process. Incubation of kidney fibroblasts with culture medium from RSL3-induced HK2 cells promoted fibroblast proliferation and activation, whereas Lip-1 impeded the profibrotic effects. Our study found that Lip-1 may relieve renal fibrosis by inhibiting ferroptosis in TECs. Mechanistically, Lip-1 could reduce the activation of surrounding fibroblasts by inhibiting the paracrine of profibrotic factors in HK2 cells. Lip-1 may potentially be used as a therapeutic approach for the treatment of UUO-induced renal fibrosis.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiang Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Feng Ru
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yu Gan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Bingsheng Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Weiping Xia
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Guoyu Dai
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yao He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| | - Zhi Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
6
|
Zhang B, Ru F, Chen X, Chen Z. Autophagy attenuates renal fibrosis in obstructive nephropathy through inhibiting epithelial -to -mesenchymal transition. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:601-608. [PMID: 34275928 PMCID: PMC10930200 DOI: 10.11817/j.issn.1672-7347.2021.201008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To explore the relationship between autophagy and epithelial-to-mesenchymal transition (EMT), and to evaluate whether autophagy can affect the progression of renal fibrosis in obstructive nephropathy by regulating the EMT process. METHODS Unilateral ureteral obstruction (UUO) renal fibrosis model of rat was constructed, and the animals were divided into a sham group, an UUO group, an UUO+low-dose rapamycin group, and an UUO+high-dose rapamycin group. HE staining was used to observe the structure of the kidney, and Masson staining was used to observe renal interstitial collagen deposition. The expressions of E-cadherin, alpha-smooth muscle actin (α-SMA), Snail 1, and microtubule-associated protein-1 light chain 3II (LC3II) were detected by Western blotting, reflecting cellular EMT and autophagy. Transforming growth factor β1 (TGF-β1) induced-NRK52E cells model was constructed, and the cells were divided into a control group, a TGF-β1 group, and a TGF-β1+ Snail 1 siRNA group. To explore the effect of autophagy on EMT, the cells were also divided into a control group, a rapamycin group, and a Beclin 1 siRNA group. Western blotting was used to detect the expressions of E-cadherin, α-SMA, Snail 1, LC3II, collagen I, and fibronectin. RESULTS Compared with the sham group, the kidney damage in the UUO group was significantly worse; compared with the sham group, the collagen deposition in the kidney tissues in the UUO group was significantly increased, which were significantly reduced in the UUO+high-dose rapamycin group and the UUO+low-dose rapamycin group compared with the UUO group; compared with the sham group, the E-cadherin level in the kidney of the UUO group was significantly reduced, and the expression levels of α-SMA and LC3II were significantly increased (all P<0.05). Compared with the UUO group, the expression levels of E-cadherin and LC3II in the UUO+high-dose rapamycin group and the UUO+low-dose rapamycin group were significantly increased (P<0.01 and P<0.05, respectively), and the expression level of α-SMA was significantly decreased (P<0.01 and P<0.05, respectively). The expression levels of Snail 1, α-SMA, collagen I and fibronectin were significantly higher, and the E-cadherin level was significantly lower in the TGF-β1 group than those in the control group (all P<0.05). Compared with the TGF-β1 group, the expression of E-cadherin was increased significantly, and the expressions of α-SMA, collagen I and fibronectin were decreased significantly in the TGF-β1+Snail 1 siRNA group (all P<0.05). Compared with the control group, the expression levels of LC3II and E-cadherin were significantly elevated, and the expression levels of α-SMA and Snail 1 in the rapamycin group were significantly reduced (all P<0.05); the expression levels of LC3II and E-cadherin were significantly reduced, and the expression levels of α-SMA and Snail 1 were significantly increased in the Beclin 1 siRNA group (all P<0.05). CONCLUSIONS Autophagy plays an essential role in the regulation of EMT in obstructive nephropathy fibrosis. Autophagy can alleviate renal fibrosis by inhibiting EMT.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Feng Ru
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiang Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhi Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
7
|
Xie H, Miao N, Xu D, Zhou Z, Ni J, Yin F, Wang Y, Cheng Q, Chen P, Li J, Zheng P, Zhou L, Liu J, Zhang W, Wang X, Lu L. FoxM1 promotes Wnt/β-catenin pathway activation and renal fibrosis via transcriptionally regulating multi-Wnts expressions. J Cell Mol Med 2021; 25:1958-1971. [PMID: 33434361 PMCID: PMC7882937 DOI: 10.1111/jcmm.15948] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/27/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
The activation of Wnt/β‐catenin pathway plays a pivotal role in promoting renal fibrosis. The activation of Wnt/β‐catenin pathway relies on the binding of Wnts to Frizzled receptors on cell membrane. However, the factor regulating Wnts production remains unclear. Here, we demonstrated that transcriptional factor FoxM1 was significantly increased in obstructed kidneys and patients' kidneys with fibrosis. The up‐regulation of FoxM1 mainly distributed in tubular epithelial cells. Pharmacological inhibition of FoxM1 down‐regulated multi‐Wnts elevation in UUO mice and attenuated renal fibrosis. In cultured renal tubular epithelial cells, overexpression of FoxM1 promoted 8 Wnts expression, while knock‐down on FoxM1‐suppressed multi‐Wnts including Wnt1, Wnt2b and Wnt3 expression induced by Ang II. Chromatin immunoprecipitation PCR confirmed that FoxM1 bound to Wnt1, Wnt2b, Wnt3 promoters and luciferase assay further identified that the transcriptions of Wnt1, Wnt2b and Wnt3 were regulated by FoxM1. Thus, our findings show that multi‐Wnt family members were regulated by transcriptional factor FoxM1. FoxM1 might be a key switch for activating β‐catenin pathway and renal fibrosis. Therefore, FoxM1 might be a potential therapeutic target in manipulating renal fibrosis.
Collapse
Affiliation(s)
- Hongyan Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Naijun Miao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Dan Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhuanli Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiayun Ni
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Fan Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yanzhe Wang
- Department of Nephrology, Shanghai Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Qian Cheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Panpan Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jingyao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Peiqing Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Li Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jun Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiaoxia Wang
- Department of Nephrology, Shanghai Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Limin Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.,Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, 201102, China
| |
Collapse
|
8
|
WNT-β-catenin signalling - a versatile player in kidney injury and repair. Nat Rev Nephrol 2020; 17:172-184. [PMID: 32989282 DOI: 10.1038/s41581-020-00343-w] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2020] [Indexed: 12/11/2022]
Abstract
The WNT-β-catenin system is an evolutionary conserved signalling pathway that is of particular importance for morphogenesis and cell organization during embryogenesis. The system is usually suppressed in adulthood; however, it can be re-activated in organ injury and regeneration. WNT-deficient mice display severe kidney defects at birth. Transient WNT-β-catenin activation stimulates tissue regeneration after acute kidney injury, whereas sustained (uncontrolled) WNT-β-catenin signalling promotes kidney fibrosis in chronic kidney disease (CKD), podocyte injury and proteinuria, persistent tissue damage during acute kidney injury and cystic kidney diseases. Additionally, WNT-β-catenin signalling is involved in CKD-associated vascular calcification and mineral bone disease. The WNT-β-catenin pathway is tightly regulated, for example, by proteins of the Dickkopf (DKK) family. In particular, DKK3 is released by 'stressed' tubular epithelial cells; DKK3 drives kidney fibrosis and is associated with short-term risk of CKD progression and acute kidney injury. Thus, targeting the WNT-β-catenin pathway might represent a promising therapeutic strategy in kidney injury and associated complications.
Collapse
|
9
|
Nishi H. Porcupine's dilemma in kidney fibrosis. Kidney Int 2019; 96:1269-1271. [PMID: 31759483 DOI: 10.1016/j.kint.2019.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 11/17/2022]
Abstract
Aberrant activation of Wnt/β-catenin signaling, an activity that is critically modulated by porcupine, a membrane-bound O-acyltransferase, is profibrotic. Previously, the Crowley laboratory demonstrated that oral administration of porcupine inhibitor attenuated experimental mouse kidney fibrosis. Now Lu et al., from that laboratory, using conditional knockout lineages, have shown that porcupine in the renal tubule accelerated fibrosis and Wnt generation, whereas myeloid cell porcupine counteracted the effect. Thus, porcupine has been attracting both positive and negative attention.
Collapse
Affiliation(s)
- Hiroshi Nishi
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|