1
|
Claus LR, Chen C, Stallworth J, Turner JL, Slaats GG, Hawks AL, Mabillard H, Senum SR, Srikanth S, Flanagan-Steet H, Louie RJ, Silver J, Lerner-Ellis J, Morel C, Mighton C, Sleutels F, van Slegtenhorst M, van Ham T, Brooks AS, Dorresteijn EM, Barakat TS, Dahan K, Demoulin N, Goffin EJ, Olinger E, Larsen M, Hertz JM, Lilien MR, Obeidová L, Seeman T, Stone HK, Kerecuk L, Gurgu M, Yousef Yengej FA, Ammerlaan CME, Rookmaaker MB, Hanna C, Rogers RC, Duran K, Peters E, Sayer JA, van Haaften G, Harris PC, Ling K, Mason JM, van Eerde AM, Steet R. Certain heterozygous variants in the kinase domain of the serine/threonine kinase NEK8 can cause an autosomal dominant form of polycystic kidney disease. Kidney Int 2023; 104:995-1007. [PMID: 37598857 PMCID: PMC10592035 DOI: 10.1016/j.kint.2023.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/22/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) resulting from pathogenic variants in PKD1 and PKD2 is the most common form of PKD, but other genetic causes tied to primary cilia function have been identified. Biallelic pathogenic variants in the serine/threonine kinase NEK8 cause a syndromic ciliopathy with extra-kidney manifestations. Here we identify NEK8 as a disease gene for ADPKD in 12 families. Clinical evaluation was combined with functional studies using fibroblasts and tubuloids from affected individuals. Nek8 knockout mouse kidney epithelial (IMCD3) cells transfected with wild type or variant NEK8 were further used to study ciliogenesis, ciliary trafficking, kinase function, and DNA damage responses. Twenty-one affected monoallelic individuals uniformly exhibited cystic kidney disease (mostly neonatal) without consistent extra-kidney manifestations. Recurrent de novo mutations of the NEK8 missense variant p.Arg45Trp, including mosaicism, were seen in ten families. Missense variants elsewhere within the kinase domain (p.Ile150Met and p.Lys157Gln) were also identified. Functional studies demonstrated normal localization of the NEK8 protein to the proximal cilium and no consistent cilia formation defects in patient-derived cells. NEK8-wild type protein and all variant forms of the protein expressed in Nek8 knockout IMCD3 cells were localized to cilia and supported ciliogenesis. However, Nek8 knockout IMCD3 cells expressing NEK8-p.Arg45Trp and NEK8-p.Lys157Gln showed significantly decreased polycystin-2 but normal ANKS6 localization in cilia. Moreover, p.Arg45Trp NEK8 exhibited reduced kinase activity in vitro. In patient derived tubuloids and IMCD3 cells expressing NEK8-p.Arg45Trp, DNA damage signaling was increased compared to healthy passage-matched controls. Thus, we propose a dominant-negative effect for specific heterozygous missense variants in the NEK8 kinase domain as a new cause of PKD.
Collapse
Affiliation(s)
- Laura R Claus
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Chuan Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Joshua L Turner
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - Gisela G Slaats
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Alexandra L Hawks
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - Holly Mabillard
- Newcastle University, Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Sarah R Senum
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Sujata Srikanth
- Research Division, Greenwood Genetic Center, Greenwood, South Carolina, USA
| | | | - Raymond J Louie
- Research Division, Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Josh Silver
- Fred A. Litwin Family Centre in Genetic Medicine, University Health Network and Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jordan Lerner-Ellis
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Chantal Morel
- Fred A. Litwin Family Centre in Genetic Medicine, University Health Network and Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Chloe Mighton
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Frank Sleutels
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tjakko van Ham
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Alice S Brooks
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Eiske M Dorresteijn
- Department of Pediatric Nephrology, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Karin Dahan
- Institute Pathology and Genetic, Center of Human Genetics, Charleroi, Belgium
| | - Nathalie Demoulin
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Eric Jean Goffin
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Eric Olinger
- Newcastle University, Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Martin Larsen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jens Michael Hertz
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Marc R Lilien
- Department of Pediatric Nephrology, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Lena Obeidová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tomas Seeman
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Pediatrics, University Hospital Ostrava, Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Hillarey K Stone
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Larissa Kerecuk
- Birmingham Women's and Children's National Health Services (NHS) Foundation Trust, National Institute for Health Care and Research (NIHR) Clinical Research Network (CRN) West Midlands, Birmingham, UK
| | - Mihai Gurgu
- Fundeni Clinical Institute, Bucharest, Romania
| | - Fjodor A Yousef Yengej
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, Utrecht, the Netherlands; Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW, Utrecht, the Netherlands
| | - Carola M E Ammerlaan
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, Utrecht, the Netherlands; Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW, Utrecht, the Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Christian Hanna
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA; Division of Pediatric Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - R Curtis Rogers
- Research Division, Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Karen Duran
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Edith Peters
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - John A Sayer
- Newcastle University, Translational and Clinical Research Institute, Newcastle upon Tyne, UK; Renal Services, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK; National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Newcastle, UK
| | - Gijs van Haaften
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Peter C Harris
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA.
| | - Jennifer M Mason
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA.
| | - Albertien M van Eerde
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Richard Steet
- Research Division, Greenwood Genetic Center, Greenwood, South Carolina, USA.
| |
Collapse
|
2
|
Ghosh Roy S, Li Z, Guo Z, Long KT, Rehrl S, Tian X, Dong K, Besse W. Dnajb11-Kidney Disease Develops from Reduced Polycystin-1 Dosage but not Unfolded Protein Response in Mice. J Am Soc Nephrol 2023; 34:1521-1534. [PMID: 37332102 PMCID: PMC10482070 DOI: 10.1681/asn.0000000000000164] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
SIGNIFICANCE STATEMENT Heterozygous DNAJB11 mutation carriers manifest with small cystic kidneys and renal failure in adulthood. Recessive cases with prenatal cystic kidney dysplasia were recently described. Our in vitro and mouse model studies investigate the proposed disease mechanism as an overlap of autosomal-dominant polycystic kidney disease and autosomal-dominant tubulointerstitial kidney disease pathogenesis. We find that DNAJB11 loss impairs cleavage and maturation of the autosomal-dominant polycystic kidney disease protein polycystin-1 (PC1) and results in dosage-dependent cyst formation in mice. We find that Dnajb11 loss does not activate the unfolded protein response, drawing a fundamental contrast with the pathogenesis of autosomal-dominant tubulointerstitial kidney disease. We instead propose that fibrosis in DNAJB11 -kidney disease may represent an exaggerated response to polycystin-dependent cysts. BACKGROUND Patients with heterozygous inactivating mutations in DNAJB11 manifest with cystic but not enlarged kidneys and renal failure in adulthood. Pathogenesis is proposed to resemble an overlap of autosomal-dominant polycystic kidney disease (ADPKD) and autosomal-dominant tubulointerstitial kidney disease (ADTKD), but this phenotype has never been modeled in vivo . DNAJB11 encodes an Hsp40 cochaperone in the endoplasmic reticulum: the site of maturation of the ADPKD polycystin-1 (PC1) protein and of unfolded protein response (UPR) activation in ADTKD. We hypothesized that investigation of DNAJB11 would shed light on mechanisms for both diseases. METHODS We used germline and conditional alleles to model Dnajb11 -kidney disease in mice. In complementary experiments, we generated two novel Dnajb11-/- cell lines that allow assessment of PC1 C-terminal fragment and its ratio to the immature full-length protein. RESULTS Dnajb11 loss results in a profound defect in PC1 cleavage but with no effect on other cystoproteins assayed. Dnajb11-/- mice are live-born at below the expected Mendelian ratio and die at a weaning age with cystic kidneys. Conditional loss of Dnajb11 in renal tubular epithelium results in PC1 dosage-dependent kidney cysts, thus defining a shared mechanism with ADPKD. Dnajb11 mouse models show no evidence of UPR activation or cyst-independent fibrosis, which is a fundamental distinction from typical ADTKD pathogenesis. CONCLUSIONS DNAJB11 -kidney disease is on the spectrum of ADPKD phenotypes with a PC1-dependent pathomechanism. The absence of UPR across multiple models suggests that alternative mechanisms, which may be cyst-dependent, explain the renal failure in the absence of kidney enlargement.
Collapse
Affiliation(s)
- Sounak Ghosh Roy
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Leggatt GP, Seaby EG, Veighey K, Gast C, Gilbert RD, Ennis S. A Role for Genetic Modifiers in Tubulointerstitial Kidney Diseases. Genes (Basel) 2023; 14:1582. [PMID: 37628633 PMCID: PMC10454709 DOI: 10.3390/genes14081582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
With the increased availability of genomic sequencing technologies, the molecular bases for kidney diseases such as nephronophthisis and mitochondrially inherited and autosomal-dominant tubulointerstitial kidney diseases (ADTKD) has become increasingly apparent. These tubulointerstitial kidney diseases (TKD) are monogenic diseases of the tubulointerstitium and result in interstitial fibrosis and tubular atrophy (IF/TA). However, monogenic inheritance alone does not adequately explain the highly variable onset of kidney failure and extra-renal manifestations. Phenotypes vary considerably between individuals harbouring the same pathogenic variant in the same putative monogenic gene, even within families sharing common environmental factors. While the extreme end of the disease spectrum may have dramatic syndromic manifestations typically diagnosed in childhood, many patients present a more subtle phenotype with little to differentiate them from many other common forms of non-proteinuric chronic kidney disease (CKD). This review summarises the expanding repertoire of genes underpinning TKD and their known phenotypic manifestations. Furthermore, we collate the growing evidence for a role of modifier genes and discuss the extent to which these data bridge the historical gap between apparently rare monogenic TKD and polygenic non-proteinuric CKD (excluding polycystic kidney disease).
Collapse
Affiliation(s)
- Gary P. Leggatt
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Wessex Kidney Centre, Queen Alexandra Hospital, Portsmouth Hospitals NHS Trust, Portsmouth PO6 3LY, UK
- Renal Department, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Eleanor G. Seaby
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
| | - Kristin Veighey
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Renal Department, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Christine Gast
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Wessex Kidney Centre, Queen Alexandra Hospital, Portsmouth Hospitals NHS Trust, Portsmouth PO6 3LY, UK
| | - Rodney D. Gilbert
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Department of Paediatric Nephrology, Southampton Children’s Hospital, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Sarah Ennis
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
| |
Collapse
|
4
|
Lei T, Xiao Z, Bi W, Cai S, Yang Y, Du H. Targeting small heat shock proteins to degrade aggregates as a potential strategy in neurodegenerative diseases. Ageing Res Rev 2022; 82:101769. [PMID: 36283618 DOI: 10.1016/j.arr.2022.101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 01/31/2023]
Abstract
Neurodegenerative diseases (NDs) are aging-related diseases that involve the death of neurons in the brain. Dysregulation of protein homeostasis leads to the production of toxic proteins or the formation of aggregates, which is the pathological basis of NDs. Small heat shock proteins (HSPB) is involved in the establishment of a protein quality control (PQC) system to maintain cellular homeostasis. HSPB can be secreted into the extracellular space and delivered by various routes, especially extracellular vehicles (EVs). HSPB plays an important role in influencing the aggregation phase of toxic proteins involved in heat shock transcription factor (HSF) regulation, oxidative stress, autophagy and apoptosis pathways. HSPB conferred neuroprotective effects by resisting toxic protein aggregation, reducing autophagy and reducing neuronal apoptosis. The HSPB treatment strategies, including targeted PQC system therapy and delivery of EVs-HSPB, can improve disease manifestations for NDs. This review aims to provide a comprehensive insight into the impact of HSPB in NDs and the feasibility of new technology to enhance HSPB expression and EVs-HSPB delivery for neurodegenerative disease.
Collapse
Affiliation(s)
- Tong Lei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangzhuang Xiao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Wangyu Bi
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Shanglin Cai
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanjie Yang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
5
|
Zhu H, Zhao ZH, Zhu SY, Xiong F, He LH, Zhang Y, Wang J. Renal-hepatic-pancreatic dysplasia-1 with a novel NPHP3 genotype: a case report and review of the literature. BMC Pediatr 2022; 22:603. [PMID: 36253741 PMCID: PMC9578240 DOI: 10.1186/s12887-022-03659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Renal-hepatic-pancreatic dysplasia type 1 (RHPD1) is a rare sporadic and autosomal recessive disorder with unknown incidence. RHPD1 is caused by biallelic pathogenic variants in NPHP3, which encode nephrocystin, an important component of the ciliary protein complex. CASE PRESENTATION In this case report, we describe a male newborn who was confirmed by ultrasound to have renal enlargement with multiple cysts, pancreatic enlargement with cysts, and increased liver echogenicity, leading to the clinical diagnosis of RHPD. In addition, a compound heterozygous pathogenic variant, namely, NPHP3 c.1761G > A (p. W587*) and the c.69delC (p. Gly24Ala24*11) variant, was detected by WES. The patient was clinically and genetically diagnosed with RHPD1. At 34 h of life, the infant died of respiratory insufficiency. CONCLUSION This is the first published case of RHPD1 in China. This study broadens the known range of RHPD1 due to NPHP3 pathogenic variants.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Pediatrics, Sichuan Provincial Maternity and Child Health Care Hospital, No. 290 West Second Street, Shayan Road, Chengdu, 610045, Sichuan, China
| | - Zhi-Hui Zhao
- Department of Neonatology, Sichuan Provincial Maternity and Child Health Care Hospital, No. 290 West Second Street, Shayan Road, Chengdu, 610045, Sichuan, China
| | - Shu-Yao Zhu
- Department of Pediatrics, Sichuan Provincial Maternity and Child Health Care Hospital, No. 290 West Second Street, Shayan Road, Chengdu, 610045, Sichuan, China
| | - Fu Xiong
- Department of Pediatrics, Sichuan Provincial Maternity and Child Health Care Hospital, No. 290 West Second Street, Shayan Road, Chengdu, 610045, Sichuan, China
| | - Li-Hong He
- Ultrasonic Department, Sichuan Provincial Maternity and Child Health Care Hospital, No. 290 West Second Street, Shayan Road, Chengdu, 610045, Sichuan, China
| | - Yong Zhang
- Department of Neonatology, Sichuan Provincial Maternity and Child Health Care Hospital, No. 290 West Second Street, Shayan Road, Chengdu, 610045, Sichuan, China.
| | - Jin Wang
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, No. 290 West Second Street, Shayan Road, Chengdu, 610045, Sichuan, China
| |
Collapse
|
6
|
Liu P, Zu F, Chen H, Yin X, Tan X. Exosomal DNAJB11 promotes the development of pancreatic cancer by modulating the EGFR/MAPK pathway. Cell Mol Biol Lett 2022; 27:87. [PMID: 36209075 PMCID: PMC9548179 DOI: 10.1186/s11658-022-00390-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/19/2022] [Indexed: 12/02/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a malignant tumor with invasive and metastatic characteristics and poor prognosis. Intracellular protein homeostasis is associated with invasion and metastasis of pancreatic cancer, but the specific molecular mechanism remains unclear. Our previous studies have revealed that DNAJB11, a key protein in protein homeostasis, is secreted by exosomes in the supernatant of dissociated pancreatic cancer cells with high metastasis. The results from transcriptome sequencing and co-immunoprecipitation (Co-IP)-based liquid chromatography with tandem mass spectrometry (LC–MS/MS) showed that depletion of DNAJB11 levels could increase HSPA5 expression and induce endoplasmic reticulum stress through the PRKR-like endoplasmic reticulum kinase signaling pathway in pancreatic cancer cells. Furthermore, exosomal DNAJB11 promoted cell development of PC cells in vitro and in vivo. In addition, exosomal DNAJB11 could regulate the expression of EGFR and activate the downstream MAPK signaling pathway. Clinical blood samples were collected to evaluate the potential of exosome DNAJB11 as a diagnostic biomarker and therapeutic target for the treatment of pancreatic cancer. This study could provide a new theoretical basis and potential molecular targets for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Peng Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Diagnostic and Therapeutic Center of Pancreatic Diseases of Liaoning Province, Shenyang, 110004, China
| | - Fuqiang Zu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Diagnostic and Therapeutic Center of Pancreatic Diseases of Liaoning Province, Shenyang, 110004, China
| | - Hui Chen
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xiaoli Yin
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Xiaodong Tan
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China. .,Diagnostic and Therapeutic Center of Pancreatic Diseases of Liaoning Province, Shenyang, 110004, China.
| |
Collapse
|
7
|
Jordan P, Dorval G, Arrondel C, Morinière V, Tournant C, Audrezet MP, Michel-Calemard L, Putoux A, Lesca G, Labalme A, Whalen S, Loeuillet L, Martinovic J, Attie-Bitach T, Bessières B, Schaefer E, Scheidecker S, Lambert L, Beneteau C, Patat O, Boute-Benejean O, Molin A, Guimiot F, Fontanarosa N, Nizon M, Lefebvre M, Jeanpierre C, Saunier S, Heidet L. Targeted next-generation sequencing in a large series of fetuses with severe renal diseases. Hum Mutat 2022; 43:347-361. [PMID: 35005812 DOI: 10.1002/humu.24324] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/23/2021] [Accepted: 12/14/2021] [Indexed: 11/07/2022]
Abstract
We report the screening of a large panel of genes in a series of 100 fetuses (98 families) affected with severe renal defects. Causative variants were identified in 22% of cases, greatly improving genetic counseling. The percentage of variants explaining the phenotype was different according to the type of phenotype. The highest diagnostic yield was found in cases affected with the ciliopathy-like phenotype (11/15 families and, in addition, a single heterozygous or a homozygous Class 3 variant in PKHD1 in three unrelated cases with autosomal recessive polycystic kidney disease). The lowest diagnostic yield was observed in cases with congenital anomalies of the kidney and urinary tract (9/78 families and, in addition, Class 3 variants in GREB1L in three unrelated cases with bilateral renal agenesis). Inheritance was autosomal recessive in nine genes (PKHD1, NPHP3, CEP290, TMEM67, DNAJB11, FRAS1, ACE, AGT, and AGTR1), and autosomal dominant in six genes (PKD1, PKD2, PAX2, EYA1, BICC1, and MYOCD). Finally, we developed an original approach of next-generation sequencing targeted RNA sequencing using the custom capture panel used for the sequencing of DNA, to validate one MYOCD heterozygous splicing variant identified in two male siblings with megabladder and inherited from their healthy mother.
Collapse
Affiliation(s)
- Penelope Jordan
- APHP Service de Génétique, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Guillaume Dorval
- APHP Service de Génétique, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France.,APHP Service de Néphrologie Pédiatrique, Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Christelle Arrondel
- Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France
| | - Vincent Morinière
- APHP Service de Génétique, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Carole Tournant
- APHP Service de Génétique, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Marie-Pierre Audrezet
- Service de Génétique moléculaire, Génétique, Génomique et Biotechnologies, UMR 1078, Hôpital Universitaire de Brest, Brest, France
| | - Laurence Michel-Calemard
- Service Biochimie Biologie Moléculaire Grand Est, Hospices Civils de Lyon, Groupement Hospitalier Est, CBPE, Bron, France
| | - Audrey Putoux
- Service de Génétique, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Gaethan Lesca
- Service de Génétique, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Audrey Labalme
- Service de Génétique, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Sandra Whalen
- APHP UF de Génétique Clinique, Centre de Référence des Anomalies du Développement et Syndromes Malformatifs, APHP, Hôpital Armand Trousseau, ERN ITHACA, Sorbonne Université, Paris, France
| | - Laurence Loeuillet
- APHP Service d'Embryofœtopathologie, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Jelena Martinovic
- APHP Service de Fœtopathologie, Hôpital Universitaire Antoine Béclère, Clamart, France
| | - Tania Attie-Bitach
- APHP Service d'Embryofœtopathologie, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,Inserm U 1163, Institut Imagine, Université de Paris, Paris, France
| | - Bettina Bessières
- APHP Service d'Embryofœtopathologie, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,Inserm U 1163, Institut Imagine, Université de Paris, Paris, France
| | - Elise Schaefer
- Service de Génétique Médicale, Institut de Génétique médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sophie Scheidecker
- Service de Génétique Médicale, Institut de Génétique médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Laetitia Lambert
- Service de Génétique Médicale, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
| | - Claire Beneteau
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Olivier Patat
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Odile Boute-Benejean
- Service de Génétique Médicale, Hôpital Jeanne de Flandre, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Arnaud Molin
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Fabien Guimiot
- APHP Service d'Embryo-Fœtopathologie, Hôpital Universitaire Robert Debré, Paris, France
| | | | - Mathilde Nizon
- Service de Génétique Médicale, CHU Nantes, L'institut Du Thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Mathilde Lefebvre
- APHP Service de Pathologie fœtale, Hôpital Universitaire Armand Trousseau, Paris, France
| | - Cécile Jeanpierre
- Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France
| | - Sophie Saunier
- Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France
| | - Laurence Heidet
- Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France.,APHP Service de Néphrologie Pédiatrique, Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Hôpital Universitaire Necker-Enfants Malades, Paris, France
| |
Collapse
|
8
|
Senum SR, Li Y(SM, Benson KA, Joli G, Olinger E, Lavu S, Madsen CD, Gregory AV, Neatu R, Kline TL, Audrézet MP, Outeda P, Nau CB, Meijer E, Ali H, Steinman TI, Mrug M, Phelan PJ, Watnick TJ, Peters DJ, Ong AC, Conlon PJ, Perrone RD, Cornec-Le Gall E, Hogan MC, Torres VE, Sayer JA, Harris PC, Harris PC. Monoallelic IFT140 pathogenic variants are an important cause of the autosomal dominant polycystic kidney-spectrum phenotype. Am J Hum Genet 2022; 109:136-156. [PMID: 34890546 DOI: 10.1016/j.ajhg.2021.11.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), characterized by progressive cyst formation/expansion, results in enlarged kidneys and often end stage kidney disease. ADPKD is genetically heterogeneous; PKD1 and PKD2 are the common loci (∼78% and ∼15% of families) and GANAB, DNAJB11, and ALG9 are minor genes. PKD is a ciliary-associated disease, a ciliopathy, and many syndromic ciliopathies have a PKD phenotype. In a multi-cohort/-site collaboration, we screened ADPKD-diagnosed families that were naive to genetic testing (n = 834) or for whom no PKD1 and PKD2 pathogenic variants had been identified (n = 381) with a PKD targeted next-generation sequencing panel (tNGS; n = 1,186) or whole-exome sequencing (WES; n = 29). We identified monoallelic IFT140 loss-of-function (LoF) variants in 12 multiplex families and 26 singletons (1.9% of naive families). IFT140 is a core component of the intraflagellar transport-complex A, responsible for retrograde ciliary trafficking and ciliary entry of membrane proteins; bi-allelic IFT140 variants cause the syndromic ciliopathy, short-rib thoracic dysplasia (SRTD9). The distinctive monoallelic phenotype is mild PKD with large cysts, limited kidney insufficiency, and few liver cysts. Analyses of the cystic kidney disease probands of Genomics England 100K showed that 2.1% had IFT140 LoF variants. Analysis of the UK Biobank cystic kidney disease group showed probands with IFT140 LoF variants as the third most common group, after PKD1 and PKD2. The proximity of IFT140 to PKD1 (∼0.5 Mb) in 16p13.3 can cause diagnostic confusion, and PKD1 variants could modify the IFT140 phenotype. Importantly, our studies link a ciliary structural protein to the ADPKD spectrum.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
9
|
Pisani I, Allinovi M, Palazzo V, Zanelli P, Gentile M, Farina MT, Giuliotti S, Cravedi P, Delsante M, Maggiore U, Fiaccadori E, Manenti L. OUP accepted manuscript. Clin Kidney J 2022; 15:1179-1187. [PMID: 35664268 PMCID: PMC9155219 DOI: 10.1093/ckj/sfac032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Indexed: 11/15/2022] Open
Abstract
Background Methods Results Conclusions
Collapse
Affiliation(s)
- Isabella Pisani
- Unità Operativa Nefrologia, Azienda-Ospedaliero Universitaria di Parma & Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Marco Allinovi
- Nephrology, Dialysis and Transplantation Unit, Careggi University Hospital, Florence, Italy
| | - Viviana Palazzo
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy
| | - Paola Zanelli
- Unità di Immunogenetica dei Trapianti, Azienda-Ospedaliero Universitaria di Parma, Parma, Italy
| | - Micaela Gentile
- Unità Operativa Nefrologia, Azienda-Ospedaliero Universitaria di Parma & Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Maria Teresa Farina
- Unità Operativa Nefrologia, Azienda-Ospedaliero Universitaria di Parma & Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Sara Giuliotti
- Unità Operativa Radiologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Paolo Cravedi
- Department of Medicine, Renal Division, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Marco Delsante
- Unità Operativa Nefrologia, Azienda-Ospedaliero Universitaria di Parma & Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Umberto Maggiore
- Unità Operativa Nefrologia, Azienda-Ospedaliero Universitaria di Parma & Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Enrico Fiaccadori
- Unità Operativa Nefrologia, Azienda-Ospedaliero Universitaria di Parma & Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | | |
Collapse
|
10
|
Mabillard H, Sayer JA, Olinger E. Clinical and genetic spectra of autosomal dominant tubulointerstitial kidney disease. Nephrol Dial Transplant 2021; 38:271-282. [PMID: 34519781 PMCID: PMC9923703 DOI: 10.1093/ndt/gfab268] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 12/23/2022] Open
Abstract
Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a clinical entity defined by interstitial fibrosis with tubular damage, bland urinalysis and progressive kidney disease. Mutations in UMOD and MUC1 are the most common causes of ADTKD but other rarer (REN, SEC61A1), atypical (DNAJB11) or heterogeneous (HNF1B) subtypes have been described. Raised awareness, as well as the implementation of next-generation sequencing approaches, have led to a sharp increase in reported cases. ADTKD is now believed to be one of the most common monogenic forms of kidney disease and overall it probably accounts for ∼5% of all monogenic causes of chronic kidney disease. Through international efforts and systematic analyses of patient cohorts, critical insights into clinical and genetic spectra of ADTKD, genotype-phenotype correlations as well as innovative diagnostic approaches have been amassed during recent years. In addition, intense research efforts are addressed towards deciphering and rescuing the cellular pathways activated in ADTKD. A better understanding of these diseases and of possible commonalities with more common causes of kidney disease may be relevant to understand and target mechanisms leading to fibrotic kidney disease in general. Here we highlight recent advances in our understanding of the different subtypes of ADTKD with an emphasis on the molecular underpinnings and its clinical presentations.
Collapse
Affiliation(s)
- Holly Mabillard
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK,Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - John A Sayer
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK,Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK,NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK
| | - Eric Olinger
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK,Correspondence to: Eric Olinger; E-mail:
| |
Collapse
|
11
|
Strong A, Simone L, Krentz A, Vaccaro C, Watson D, Ron H, Kalish JM, Pedro HF, Zackai EH, Hakonarson H. Expanding the genetic landscape of oral-facial-digital syndrome with two novel genes. Am J Med Genet A 2021; 185:2409-2416. [PMID: 34132027 PMCID: PMC8361718 DOI: 10.1002/ajmg.a.62337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022]
Abstract
Oral‐facial‐digital syndromes (OFDS) are a heterogeneous and rare group of Mendelian disorders characterized by developmental abnormalities of the oral cavity, face, and digits caused by dysfunction of the primary cilium, a mechanosensory organelle that exists atop most cell types that facilitates organ patterning and growth. OFDS is inherited both in an X‐linked dominant, X‐linked recessive, and autosomal recessive manner. Importantly, though many of the causal genes for OFDS have been identified, up to 40% of OFD syndromes are of unknown genetic basis. Here we describe three children with classical presentations of OFDS including lingual hamartomas, polydactyly, and characteristic facial features found by exome sequencing to harbor variants in causal genes not previously associated with OFDS. We describe a female with hypothalamic hamartoma, urogenital sinus, polysyndactyly, and multiple lingual hamartomas consistent with OFDVI with biallelic pathogenic variants in CEP164, a gene associated with ciliopathy‐spectrum disease, but never before with OFDS. We additionally describe two unrelated probands with postaxial polydactyly, multiple lingual hamartomas, and dysmorphic features both found to be homozygous for an identical TOPORS missense variant, c.29 C>A; (p.Pro10Gln). Heterozygous TOPORS pathogenic gene variants are associated with autosomal dominant retinitis pigmentosa, but never before with syndromic ciliopathy. Of note, both probands are of Dominican ancestry, suggesting a possible founder allele.
Collapse
Affiliation(s)
- Alanna Strong
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Laurie Simone
- Center for Genetic and Genomic Medicine, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | | | - Courtney Vaccaro
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Deborah Watson
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hayley Ron
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jennifer M Kalish
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Helio F Pedro
- Center for Genetic and Genomic Medicine, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Elaine H Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hakon Hakonarson
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Molecular genetics of renal ciliopathies. Biochem Soc Trans 2021; 49:1205-1220. [PMID: 33960378 DOI: 10.1042/bst20200791] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/25/2022]
Abstract
Renal ciliopathies are a heterogenous group of inherited disorders leading to an array of phenotypes that include cystic kidney disease and renal interstitial fibrosis leading to progressive chronic kidney disease and end-stage kidney disease. The renal tubules are lined with epithelial cells that possess primary cilia that project into the lumen and act as sensory and signalling organelles. Mutations in genes encoding ciliary proteins involved in the structure and function of primary cilia cause ciliopathy syndromes and affect many organ systems including the kidney. Recognised disease phenotypes associated with primary ciliopathies that have a strong renal component include autosomal dominant and recessive polycystic kidney disease and their various mimics, including atypical polycystic kidney disease and nephronophthisis. The molecular investigation of inherited renal ciliopathies often allows a precise diagnosis to be reached where renal histology and other investigations have been unhelpful and can help in determining kidney prognosis. With increasing molecular insights, it is now apparent that renal ciliopathies form a continuum of clinical phenotypes with disease entities that have been classically described as dominant or recessive at both extremes of the spectrum. Gene-dosage effects, hypomorphic alleles, modifier genes and digenic inheritance further contribute to the genetic complexity of these disorders. This review will focus on recent molecular genetic advances in the renal ciliopathy field with a focus on cystic kidney disease phenotypes and the genotypes that lead to them. We discuss recent novel insights into underlying disease mechanisms of renal ciliopathies that might be amenable to therapeutic intervention.
Collapse
|
13
|
Ateş EA, Turkyilmaz A, Delil K, Alavanda C, Söylemez MA, Geçkinli BB, Ata P, Arman A. Biallelic Mutations in DNAJB11 are Associated with Prenatal Polycystic Kidney Disease in a Turkish Family. Mol Syndromol 2021; 12:179-185. [PMID: 34177435 DOI: 10.1159/000513611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/05/2020] [Indexed: 11/19/2022] Open
Abstract
Polycystic kidney disease (PKD) is a life-threatening condition resulting in end-stage renal disease. Two major forms of PKD are defined according to the inheritance pattern. Autosomal dominant PKD (ADPKD) is characterized by renal cysts, where nearly half of the patients suffers from renal failure in the 7th decade of life. Autosomal recessive PKD (ARPKD) is a rarer and more severe form presenting in childhood. Whole-exome sequencing (WES) analyses was performed to investigate molecular causes of the disease in the fetus. In this study, we present 2 fetuses prenatally diagnosed with PKD in a consanguineous family. WES analysis of the second fetus revealed a homozygous variant (c.740+1G>A) in DNAJB11 which is related to ADPKD. This study reveals that DNAJB11 biallelic mutations may cause an antenatal severe form of ARPKD and contributes to understanding the DNAJB11-related ADPKD phenotype. The possibility of ARPKD due to biallelic mutations in ADPKD genes should be considered in genetic counseling.
Collapse
Affiliation(s)
- Esra Arslan Ateş
- Department of Medical Genetics, Marmara University Pendik Training and Research Hospital, İstanbul, Turkey
| | - Ayberk Turkyilmaz
- Department of Medical Genetics, Karadeniz Technical University School of Medicine, Trabzon, Turkey
| | - Kenan Delil
- Department of Medical Genetics, Marmara University School of Medicine, İstanbul, Turkey
| | - Ceren Alavanda
- Department of Medical Genetics, Marmara University School of Medicine, İstanbul, Turkey
| | - Mehmet Ali Söylemez
- Department of Medical Genetics, Marmara University School of Medicine, İstanbul, Turkey
| | - Bilgen Bilge Geçkinli
- Department of Medical Genetics, Marmara University School of Medicine, İstanbul, Turkey
| | - Pinar Ata
- Department of Medical Genetics, Marmara University School of Medicine, İstanbul, Turkey
| | - Ahmet Arman
- Department of Medical Genetics, Marmara University School of Medicine, İstanbul, Turkey
| |
Collapse
|