1
|
Chi J, Chen Y, Li C, Liu S, Che K, Kong Z, Guo Z, Chu Y, Huang Y, Yang L, Sun C, Wang Y, Lv W, Zhang Q, Guo H, Zhao H, Yang Z, Xu L, Wang P, Dong B, Hu J, Liu S, Wang F, Zhao Y, Qi M, Xin Y, Nan H, Zhao X, Zhang W, Xiao M, Si K, Wang Y, Cao Y. NUMB dysfunction defines a novel mechanism underlying hyperuricemia and gout. Cell Discov 2024; 10:106. [PMID: 39433541 PMCID: PMC11494200 DOI: 10.1038/s41421-024-00708-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 07/03/2024] [Indexed: 10/23/2024] Open
Abstract
Defective renal excretion and increased production of uric acid engender hyperuricemia that predisposes to gout. However, molecular mechanisms underlying defective uric acid excretion remain largely unknown. Here, we report a rare genetic variant of gout-unprecedented NUMB gene within a hereditary human gout family, which was identified by an unbiased genome-wide sequencing approach. This dysfunctional missense variant within the conserved region of the NUMB gene (NUMBR630H) underwent intracellular redistribution and degradation through an autophagy-dependent mechanism. Mechanistically, we identified the uric acid transporter, ATP Binding Cassette Subfamily G Member 2 (ABCG2), as a novel NUMB-binding protein through its intracellular YxNxxF motif. In polarized renal tubular epithelial cells (RTECs), NUMB promoted ABCG2 trafficking towards the apical plasma membrane. Genetic loss-of-function of NUMB resulted in redistribution of ABCG2 in the basolateral domain and ultimately defective excretion of uric acid. To recapitulate the clinical situation in human gout patients, we generated a NUMBR630H knock-in mouse strain, which showed marked increases of serum urate and decreased uric acid excretion. The NUMBR630H knock-in mice exhibited clinically relevant hyperuricemia. In summary, we have uncovered a novel NUMB-mediated mechanism of uric acid excretion and a functional missense variant of NUMB in humans, which causes hyperuricemia and gout.
Collapse
Affiliation(s)
- Jingwei Chi
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Ying Chen
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Changgui Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Institute of Metabolic Diseases, Qingdao University, Qingdao, Shandong, China
| | - Shiguo Liu
- Department of Medical Genetics, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Kui Che
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zili Kong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ziheng Guo
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanchen Chu
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yajing Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Libo Yang
- Department of Endocrinology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Cunwei Sun
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yunyang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wenshan Lv
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qing Zhang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Hui Guo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Han Zhao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zhitao Yang
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lili Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ping Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jianxia Hu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shihai Liu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fei Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yanyun Zhao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Mengmeng Qi
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yu Xin
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Huiqi Nan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiangzhong Zhao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wei Zhang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Min Xiao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ke Si
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yangang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
3
|
Gyöngy Z, Mocsár G, Hegedűs É, Stockner T, Ritter Z, Homolya L, Schamberger A, Orbán TI, Remenyik J, Szakacs G, Goda K. Nucleotide binding is the critical regulator of ABCG2 conformational transitions. eLife 2023; 12:83976. [PMID: 36763413 PMCID: PMC9917445 DOI: 10.7554/elife.83976] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
ABCG2 is an exporter-type ABC protein that can expel numerous chemically unrelated xeno- and endobiotics from cells. When expressed in tumor cells or tumor stem cells, ABCG2 confers multidrug resistance, contributing to the failure of chemotherapy. Molecular details orchestrating substrate translocation and ATP hydrolysis remain elusive. Here, we present methods to concomitantly investigate substrate and nucleotide binding by ABCG2 in cells. Using the conformation-sensitive antibody 5D3, we show that the switch from the inward-facing (IF) to the outward-facing (OF) conformation of ABCG2 is induced by nucleotide binding. IF-OF transition is facilitated by substrates, and hindered by the inhibitor Ko143. Direct measurements of 5D3 and substrate binding to ABCG2 indicate that the high-to-low affinity switch of the drug binding site coincides with the transition from the IF to the OF conformation. Low substrate binding persists in the post-hydrolysis state, supporting that dissociation of the ATP hydrolysis products is required to reset the high substrate affinity IF conformation of ABCG2.
Collapse
Affiliation(s)
- Zsuzsanna Gyöngy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of DebrecenDebrecenHungary,Doctoral School of Molecular Cell and Immune Biology, University of DebrecenDebrecenHungary
| | - Gábor Mocsár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Éva Hegedűs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Zsuzsanna Ritter
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of DebrecenDebrecenHungary,Doctoral School of Molecular Cell and Immune Biology, University of DebrecenDebrecenHungary
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Anita Schamberger
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Tamás I Orbán
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Judit Remenyik
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of DebrecenDebrecenHungary
| | - Gergely Szakacs
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary,Institute of Cancer Research, Medical University of ViennaViennaAustria
| | - Katalin Goda
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of DebrecenDebrecenHungary
| |
Collapse
|
4
|
Sun X, Wen J, Guan B, Li J, Luo J, Li J, Wei M, Qiu H. Folic acid and zinc improve hyperuricemia by altering the gut microbiota of rats with high-purine diet-induced hyperuricemia. Front Microbiol 2022; 13:907952. [PMID: 35966674 PMCID: PMC9372534 DOI: 10.3389/fmicb.2022.907952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/08/2022] [Indexed: 12/02/2022] Open
Abstract
A high-purine diet can cause hyperuricemia and destroy the microbial composition of the gut microbiota. Both folic acid and zinc significantly reduce uric acid levels and alleviate hyperuricemia. However, whether the underlying mechanisms are associated with the regulation of the gut microbiota remain unknown. To explore alterations of the gut microbiota related to folic acid and zinc treatment in rats with hyperuricemia in our study. A hyperuricemic rat model was established with a high-purine diet. The effects of folic acid and zinc on uric acid levels were evaluated. Alterations of the gut microbiota related to hyperuricemia and the treatments were evaluated by sequencing using the Illumina MiSeq system. The results demonstrated that uric acid levels dropped observably, and the activities of adenosine deaminase (ADA) and xanthine oxidase (XOD) were downregulated after folic acid or zinc intervention. 16S rRNA gene sequencing-based gut microbiota analysis revealed that folic acid and zinc enhanced the abundance of probiotic bacteria and reduced that of pathogenic bacteria, thus improving intestinal barrier function. PICRUST analysis indicated that folic acid and zinc restored gut microbiota metabolism. These findings indicate that folic acid and zinc ameliorate hyperuricemia by inhibiting uric acid biosynthesis and stimulating uric acid excretion by modulating the gut microbiota. Thus, folic acid and zinc may be new and safe therapeutic agents to improve hyperuricemia.
Collapse
Affiliation(s)
- Xuewei Sun
- School of Public Health, Jiamusi University, Jiamusi, China
- Heilongjiang Provincial Key Laboratory of Gout Research, Jiamusi, China
- *Correspondence: Xuewei Sun,
| | - Jie Wen
- School of Public Health, Jiamusi University, Jiamusi, China
- Heilongjiang Provincial Key Laboratory of Gout Research, Jiamusi, China
| | - Baosheng Guan
- School of Public Health, Jiamusi University, Jiamusi, China
- Heilongjiang Provincial Key Laboratory of Gout Research, Jiamusi, China
| | - Jialin Li
- School of Public Health, Jiamusi University, Jiamusi, China
- Heilongjiang Provincial Key Laboratory of Gout Research, Jiamusi, China
| | - Jincheng Luo
- School of Public Health, Jiamusi University, Jiamusi, China
- Heilongjiang Provincial Key Laboratory of Gout Research, Jiamusi, China
| | - Jie Li
- School of Public Health, Jiamusi University, Jiamusi, China
- Heilongjiang Provincial Key Laboratory of Gout Research, Jiamusi, China
| | - Mingyu Wei
- School of Public Health, Jiamusi University, Jiamusi, China
- Heilongjiang Provincial Key Laboratory of Gout Research, Jiamusi, China
| | - Hongbin Qiu
- School of Public Health, Jiamusi University, Jiamusi, China
- Heilongjiang Provincial Key Laboratory of Gout Research, Jiamusi, China
- Hongbin Qiu,
| |
Collapse
|