1
|
Van Sciver RE, Caspary T. A prioritization tool for cilia-associated genes and their in vivo resources unveils new avenues for ciliopathy research. Dis Model Mech 2024; 17:dmm052000. [PMID: 39263856 PMCID: PMC11512102 DOI: 10.1242/dmm.052000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
Defects in ciliary signaling or mutations in proteins that localize to primary cilia lead to a class of human diseases known as ciliopathies. Approximately 10% of mammalian genes encode cilia-associated proteins, and a major gap in the cilia research field is knowing which genes to prioritize to study and finding the in vivo vertebrate mutant alleles and reagents available for their study. Here, we present a unified resource listing the cilia-associated human genes cross referenced to available mouse and zebrafish mutant alleles, and their associated phenotypes, as well as expression data in the kidney and functional data for vertebrate Hedgehog signaling. This resource empowers researchers to easily sort and filter genes based on their own expertise and priorities, cross reference with newly generated -omics datasets, and quickly find in vivo resources and phenotypes associated with a gene of interest.
Collapse
Affiliation(s)
- Robert E. Van Sciver
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Ando F, Hara Y, Uchida S. Identification of protein kinase A signalling molecules in renal collecting ducts. J Physiol 2024; 602:3057-3067. [PMID: 37013848 DOI: 10.1113/jp284178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Body water homeostasis is maintained by the correct balance between water intake and water loss through urine, faeces, sweat and breath. It is known that elevated circulating levels of the antidiuretic hormone vasopressin decrease urine volume to prevent excessive water loss from the body. Vasopressin/cAMP/protein kinase A (PKA) signalling is the canonical pathway in renal collecting ducts for phosphorylating aquaporin-2 (AQP2) water channels, which leads to the reabsorption of water from urine via AQP2. Although recent omics data have verified various downstream targets of PKA, crucial regulators that mediate PKA-induced AQP2 phosphorylation remain unknown, mainly because vasopressin is usually used to activate PKA as a positive control. Vasopressin is extremely potent and phosphorylates various PKA substrates non-specifically, making it difficult to narrow down the candidate mediators responsible for AQP2 phosphorylation. The intracellular localization of PKA is tightly regulated by its scaffold proteins, also known as A-kinase anchoring proteins (AKAPs). Furthermore, each AKAP has a target domain that determines its intracellular localization, enabling the creation of a local PKA signalling network. Although vasopressin activates most PKAs independently of their intracellular localization, some chemical compounds preferentially act on PKAs localized on AQP2-containing vesicles while simultaneously phosphorylating AQP2 and its surrounding PKA substrates. Immunoprecipitation with antibodies against phosphorylated PKA substrates followed by mass spectrometry analysis revealed that the PKA substrate in proximity to AQP2 was lipopolysaccharide-responsive and beige-like anchor (LRBA). Furthermore, Lrba knockout studies revealed that LRBA was required for vasopressin-induced AQP2 phosphorylation.
Collapse
Affiliation(s)
- Fumiaki Ando
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yu Hara
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shinichi Uchida
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
3
|
Yurtdas ZY, Kilic E, Boor P, Wyler E, Landthaler M, Jung K, Schmidt-Ott KM. Grainyhead-like 2 Deficiency and Kidney Cyst Growth in a Mouse Model. J Am Soc Nephrol 2024; 35:838-853. [PMID: 38656794 PMCID: PMC11230724 DOI: 10.1681/asn.0000000000000353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Key Points Our study reveals segment-specific mechanisms in cystic kidney disease and suggests Grhl2 as a modifier of collecting duct–derived cyst progression. Our data demonstrate that genetic deletion of Grhl2 accelerates disease progression in a cystic mouse model. Background The transcription factor grainyhead-like 2 (GRHL2) plays a crucial role in maintaining the epithelial barrier properties of the kidney collecting duct and is important to osmoregulation. We noticed a reduction in GRHL2 expression in cysts derived from the collecting ducts in kidneys affected by autosomal dominant polycystic kidney disease (ADPKD). However, the specific role of GRHL2 in cystic kidney disease remains unknown. Methods The functional role of the transcription factor Grhl2 in the context of cystic kidney disease was examined through analysis of its expression pattern in patient samples with ADPKD and generating a transgenic cystic kidney disease (TCKD) mouse model by overexpressing the human proto-oncogene c-MYC in kidney collecting ducts. Next, TCKD mice bred with collecting duct–specific Grhl2 knockout mice (Grhl2KO). The resulting TCKD-Grhl2 KO mice and their littermates were examined by various types of histological and biochemical assays and gene profiling analysis through RNA sequencing. Results A comprehensive examination of kidney samples from patients with ADPKD revealed GRHL2 downregulation in collecting duct–derived cyst epithelia. Comparative analysis of TCKD and TCKD-Grhl2 KO mice exhibited that the collecting duct–specific deletion of Grhl2 resulted in markedly aggravated cyst growth, worsened kidney dysfunction, and shortened life span. Furthermore, transcriptomic analyses indicated sequential downregulation of kidney epithelial cyst development regulators (Frem2 , Muc1 , Cdkn2c , Pkd2 , and Tsc1 ) during cyst progression in kidneys of TCKD-Grhl2 KO mice, which included presumed direct Grhl2 target genes. Conclusions These results suggest Grhl2 as a potential progression modifier, especially for cysts originating from collecting ducts.
Collapse
Affiliation(s)
- Zeliha Yesim Yurtdas
- Molecular and Translational Kidney Research, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Urologic Research, Berlin, Germany
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ergin Kilic
- Medical School Hamburg, Department of Pathology, Hamburg, Germany
| | - Peter Boor
- Institute of Pathology and Department of Nephrology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Institute für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Klaus Jung
- Berlin Institute for Urologic Research, Berlin, Germany
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kai M. Schmidt-Ott
- Molecular and Translational Kidney Research, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Chou CL, Limbutara K, Kao AR, Clark JZ, Nein EH, Raghuram V, Knepper MA. Collecting duct water permeability inhibition by EGF is associated with decreased cAMP, PKA activity, and AQP2 phosphorylation at Ser 269. Am J Physiol Renal Physiol 2024; 326:F545-F559. [PMID: 38205543 PMCID: PMC11208025 DOI: 10.1152/ajprenal.00197.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Prior studies showed that epidermal growth factor (EGF) inhibits vasopressin-stimulated osmotic water permeability in the renal collecting duct. Here, we investigated the underlying mechanism. Using isolated perfused rat inner medullary collecting ducts (IMCDs), we found that the addition of EGF to the peritubular bath significantly decreased 1-deamino-8-d-arginine vasopressin (dDAVP)-stimulated water permeability, confirming prior observations. The inhibitory effect of EGF on water permeability was associated with a reduction in intracellular cAMP levels and protein kinase A (PKA) activity. Using phospho-specific antibodies and immunoblotting in IMCD suspensions, we showed that EGF significantly reduces phosphorylation of AQP2 at Ser264 and Ser269. This effect was absent when 8-cpt-cAMP was used to induce AQP2 phosphorylation, suggesting that EGF's inhibitory effect was at a pre-cAMP step. Immunofluorescence labeling of microdissected IMCDs showed that EGF significantly reduced apical AQP2 abundance in the presence of dDAVP. To address what protein kinase might be responsible for Ser269 phosphorylation, we used Bayesian analysis to integrate multiple-omic datasets. Thirteen top-ranked protein kinases were subsequently tested by in vitro phosphorylation experiments for their ability to phosphorylate AQP2 peptides using a mass spectrometry readout. The results show that the PKA catalytic-α subunit increased phosphorylation at Ser256, Ser264, and Ser269. None of the other kinases tested phosphorylated Ser269. In addition, H-89 and PKI strongly inhibited dDAVP-stimulated AQP2 phosphorylation at Ser269. These results indicate that EGF decreases the water permeability of the IMCD by inhibiting cAMP production, thereby inhibiting PKA and decreasing AQP2 phosphorylation at Ser269, a site previously shown to regulate AQP2 endocytosis.NEW & NOTEWORTHY The authors used native rat collecting ducts to show that inhibition of vasopressin-stimulated water permeability by epidermal growth factor involves a reduction of aquaporin 2 phosphorylation at Ser269, a consequence of reduced cAMP production and PKA activity.
Collapse
Affiliation(s)
- Chung-Lin Chou
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Kavee Limbutara
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Anika R Kao
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Jevin Z Clark
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Ellen H Nein
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
5
|
Elliott KH, Balchand SK, Bonatto Paese CL, Chang CF, Yang Y, Brown KM, Rasicci DT, He H, Thorner K, Chaturvedi P, Murray SA, Chen J, Porollo A, Peterson KA, Brugmann SA. Identification of a heterogeneous and dynamic ciliome during embryonic development and cell differentiation. Development 2023; 150:dev201237. [PMID: 36971348 PMCID: PMC10163354 DOI: 10.1242/dev.201237] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
Primary cilia are nearly ubiquitous organelles that transduce molecular and mechanical signals. Although the basic structure of the cilium and the cadre of genes that contribute to ciliary formation and function (the ciliome) are believed to be evolutionarily conserved, the presentation of ciliopathies with narrow, tissue-specific phenotypes and distinct molecular readouts suggests that an unappreciated heterogeneity exists within this organelle. Here, we provide a searchable transcriptomic resource for a curated primary ciliome, detailing various subgroups of differentially expressed genes within the ciliome that display tissue and temporal specificity. Genes within the differentially expressed ciliome exhibited a lower level of functional constraint across species, suggesting organism and cell-specific function adaptation. The biological relevance of ciliary heterogeneity was functionally validated by using Cas9 gene-editing to disrupt ciliary genes that displayed dynamic gene expression profiles during osteogenic differentiation of multipotent neural crest cells. Collectively, this novel primary cilia-focused resource will allow researchers to explore longstanding questions related to how tissue and cell-type specific functions and ciliary heterogeneity may contribute to the range of phenotypes associated with ciliopathies.
Collapse
Affiliation(s)
- Kelsey H. Elliott
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA
| | - Sai K. Balchand
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA
| | - Christian Louis Bonatto Paese
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA
| | - Ching-Fang Chang
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA
| | - Yanfen Yang
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA
| | - Kari M. Brown
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA
| | | | - Hao He
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Konrad Thorner
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
| | - Praneet Chaturvedi
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
| | | | - Jing Chen
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
| | - Aleksey Porollo
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
| | | | - Samantha A. Brugmann
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
6
|
Park E, Yang CR, Raghuram V, Deshpande V, Datta A, Poll BG, Leo KT, Kikuchi H, Chen L, Chou CL, Knepper MA. Data resource: vasopressin-regulated protein phosphorylation sites in the collecting duct. Am J Physiol Renal Physiol 2023; 324:F43-F55. [PMID: 36264882 PMCID: PMC9762968 DOI: 10.1152/ajprenal.00229.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 02/04/2023] Open
Abstract
Vasopressin controls renal water excretion through actions to regulate aquaporin-2 (AQP2) trafficking, transcription, and degradation. These actions are in part dependent on vasopressin-induced phosphorylation changes in collecting duct cells. Although most efforts have focused on the phosphorylation of AQP2 itself, phosphoproteomic studies have identified many vasopressin-regulated phosphorylation sites in proteins other than AQP2. The goal of this bioinformatics-based review is to create a compendium of vasopressin-regulated phosphorylation sites with a focus on those that are seen in both native rat inner medullary collecting ducts and cultured collecting duct cells from the mouse (mpkCCD), arguing that these sites are the best candidates for roles in AQP2 regulation. This analysis identified 51 vasopressin-regulated phosphorylation sites in 45 proteins. We provide resource web pages at https://esbl.nhlbi.nih.gov/Databases/AVP-Phos/ and https://esbl.nhlbi.nih.gov/AVP-Network/, listing the phosphorylation sites and describing annotated functions of each of the vasopressin-targeted phosphoproteins. Among these sites are 23 consensus protein kinase A (PKA) sites that are increased in response to vasopressin, consistent with a central role for PKA in vasopressin signaling. The remaining sites are predicted to be phosphorylated by other kinases, most notably ERK1/2, which accounts for decreased phosphorylation at sites with a X-p(S/T)-P-X motif. Additional protein kinases that undergo vasopressin-induced changes in phosphorylation are Camkk2, Cdk18, Erbb3, Mink1, and Src, which also may be activated directly or indirectly by PKA. The regulated phosphoproteins are mapped to processes that hypothetically can account for vasopressin-mediated control of AQP2 trafficking, cytoskeletal alterations, and Aqp2 gene expression, providing grist for future studies.NEW & NOTEWORTHY Vasopressin regulates renal water excretion through control of the aquaporin-2 water channel in collecting duct cells. Studies of vasopressin-induced protein phosphorylation have focused mainly on the phosphorylation of aquaporin-2. This study describes 44 phosphoproteins other than aquaporin-2 that undergo vasopressin-mediated phosphorylation changes and summarizes potential physiological roles of each.
Collapse
Affiliation(s)
- Euijung Park
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Venkatesh Deshpande
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Arnab Datta
- Laboratory of Translational Neuroscience, Division of Neuroscience, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, India
| | - Brian G Poll
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Kirby T Leo
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Hiroaki Kikuchi
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
7
|
Walker RV, Maranto A, Palicharla VR, Hwang SH, Mukhopadhyay S, Qian F. Cilia-Localized Counterregulatory Signals as Drivers of Renal Cystogenesis. Front Mol Biosci 2022; 9:936070. [PMID: 35832738 PMCID: PMC9272769 DOI: 10.3389/fmolb.2022.936070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 12/18/2022] Open
Abstract
Primary cilia play counterregulatory roles in cystogenesis-they inhibit cyst formation in the normal renal tubule but promote cyst growth when the function of polycystins is impaired. Key upstream cilia-specific signals and components involved in driving cystogenesis have remained elusive. Recent studies of the tubby family protein, Tubby-like protein 3 (TULP3), have provided new insights into the cilia-localized mechanisms that determine cyst growth. TULP3 is a key adapter of the intraflagellar transport complex A (IFT-A) in the trafficking of multiple proteins specifically into the ciliary membrane. Loss of TULP3 results in the selective exclusion of its cargoes from cilia without affecting their extraciliary pools and without disrupting cilia or IFT-A complex integrity. Epistasis analyses have indicated that TULP3 inhibits cystogenesis independently of the polycystins during kidney development but promotes cystogenesis in adults when polycystins are lacking. In this review, we discuss the current model of the cilia-dependent cyst activation (CDCA) mechanism in autosomal dominant polycystic kidney disease (ADPKD) and consider the possible roles of ciliary and extraciliary polycystins in regulating CDCA. We then describe the limitations of this model in not fully accounting for how cilia single knockouts cause significant cystic changes either in the presence or absence of polycystins. Based on available data from TULP3/IFT-A-mediated differential regulation of cystogenesis in kidneys with deletion of polycystins either during development or in adulthood, we hypothesize the existence of cilia-localized components of CDCA (cCDCA) and cilia-localized cyst inhibition (CLCI) signals. We develop the criteria for cCDCA/CLCI signals and discuss potential TULP3 cargoes as possible cilia-localized components that determine cystogenesis in kidneys during development and in adult mice.
Collapse
Affiliation(s)
- Rebecca V. Walker
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Anthony Maranto
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | | | - Sun-Hee Hwang
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Saikat Mukhopadhyay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|