1
|
Srikrishnaraj A, Lanting BA, Burton JP, Teeter MG. The Microbial Revolution in the World of Joint Replacement Surgery. JB JS Open Access 2024; 9:e23.00153. [PMID: 38638595 PMCID: PMC11023614 DOI: 10.2106/jbjs.oa.23.00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Background The prevalence of revision surgery due to aseptic loosening and periprosthetic joint infection (PJI) following total hip and knee arthroplasty is growing. Strategies to prevent the need for revision surgery and its associated health-care costs and patient morbidity are needed. Therapies that modulate the gut microbiota to influence bone health and systemic inflammation are a novel area of research. Methods A literature review of preclinical and clinical peer-reviewed articles relating to the role of the gut microbiota in bone health and PJI was performed. Results There is evidence that the gut microbiota plays a role in maintaining bone mineral density, which can contribute to osseointegration, osteolysis, aseptic loosening, and periprosthetic fractures. Similarly, the gut microbiota influences gut permeability and the potential for bacterial translocation to the bloodstream, increasing susceptibility to PJI. Conclusions Emerging evidence supports the role of the gut microbiota in the development of complications such as aseptic loosening and PJI after total hip or knee arthroplasty. There is a potential for microbial therapies such as probiotics or fecal microbial transplantation to moderate the risk of developing these complications. However, further investigation is required. Clinical Relevance Modulation of the gut microbiota may influence patient outcomes following total joint arthroplasty.
Collapse
Affiliation(s)
- Arjuna Srikrishnaraj
- Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Brent A. Lanting
- Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Bone and Joint Institute, Western University, London, Ontario, Canada
| | - Jeremy P. Burton
- Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Bone and Joint Institute, Western University, London, Ontario, Canada
| | - Matthew G. Teeter
- Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Bone and Joint Institute, Western University, London, Ontario, Canada
| |
Collapse
|
2
|
Fernández-Rodríguez D, Baker CM, Tarabichi S, Johnson EE, Ciccotti MG, Parvizi J. Human Knee Has A Distinct Microbiome: Implications for Periprosthetic Joint Infection. J Arthroplasty 2023; 38:S2-S6. [PMID: 37003456 DOI: 10.1016/j.arth.2023.03.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
INTRODUCTION Pathogens causing prosthetic joint infection are thought to gain access to the knee during surgery or from a remote site in the body. Recent studies have shown that there is a distinct microbiome in various sites of the body. This prospective study, and first of its kind, was set up to investigate the presence of possible microbiome in human knee and compare the profile in different knee conditions. METHODS This transversal study prospectively obtained synovial fluid from 65 knees (55 patients) with various conditions that included normal knee, osteoarthritis, aseptic revision, and those undergoing revision for periprosthetic joint infection (PJI). The contralateral knee of patients who had a PJI were also aspirated to compare the composition of the PJI knee with uninfected contralateral knee. A minimum of 3 milliliters (ml) of synovial fluid was collected per joint. Then, the samples were aliquoted for culture and next generation sequencing (NGS) analysis. RESULTS The highest number of species was found in native osteoarthritic knees (P≤0.035). Cutibacterium, Staphylococcus, and Paracoccus species were dominant in native non-osteoarthritic knees, and meanwhile a markedly high abundance of Proteobacteria was observed in the osteoarthritic joints. Moreover, the contralateral and aseptic revision knees showed a similar trend in bacterial composition (P=0.75). The NGS analysis of patients who had PJI diagnosis, confirmed the culture results. DISCUSSION/CONCLUSION Distinct knee microbiome profiles can be detected in patients who have osteoarthritis and other knee conditions. The distinct microbiome in the knee joint and the close host-microbe relationships within the knee joint may play a decisive role in the development of osteoarthritis and periprosthetic joint infection.
Collapse
Affiliation(s)
- Diana Fernández-Rodríguez
- Rothman Orthopaedic Institute, Philadelphia, Pennsylvania, USA; Plan de Estudios Combinados en Medicina (PECEM) MD/PhD, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Colin M Baker
- Rothman Orthopaedic Institute, Philadelphia, Pennsylvania, USA
| | - Saad Tarabichi
- Rothman Orthopaedic Institute, Philadelphia, Pennsylvania, USA
| | - Emma E Johnson
- Rothman Orthopaedic Institute, Philadelphia, Pennsylvania, USA
| | | | - Javad Parvizi
- Rothman Orthopaedic Institute, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
3
|
Gamaletsou MN, Rammaert B, Brause B, Bueno MA, Dadwal SS, Henry MW, Katragkou A, Kontoyiannis DP, McCarthy MW, Miller AO, Moriyama B, Pana ZD, Petraitiene R, Petraitis V, Roilides E, Sarkis JP, Simitsopoulou M, Sipsas NV, Taj-Aldeen SJ, Zeller V, Lortholary O, Walsh TJ. Osteoarticular Mycoses. Clin Microbiol Rev 2022; 35:e0008619. [PMID: 36448782 PMCID: PMC9769674 DOI: 10.1128/cmr.00086-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Osteoarticular mycoses are chronic debilitating infections that require extended courses of antifungal therapy and may warrant expert surgical intervention. As there has been no comprehensive review of these diseases, the International Consortium for Osteoarticular Mycoses prepared a definitive treatise for this important class of infections. Among the etiologies of osteoarticular mycoses are Candida spp., Aspergillus spp., Mucorales, dematiaceous fungi, non-Aspergillus hyaline molds, and endemic mycoses, including those caused by Histoplasma capsulatum, Blastomyces dermatitidis, and Coccidioides species. This review analyzes the history, epidemiology, pathogenesis, clinical manifestations, diagnostic approaches, inflammatory biomarkers, diagnostic imaging modalities, treatments, and outcomes of osteomyelitis and septic arthritis caused by these organisms. Candida osteomyelitis and Candida arthritis are associated with greater events of hematogenous dissemination than those of most other osteoarticular mycoses. Traumatic inoculation is more commonly associated with osteoarticular mycoses caused by Aspergillus and non-Aspergillus molds. Synovial fluid cultures are highly sensitive in the detection of Candida and Aspergillus arthritis. Relapsed infection, particularly in Candida arthritis, may develop in relation to an inadequate duration of therapy. Overall mortality reflects survival from disseminated infection and underlying host factors.
Collapse
Affiliation(s)
- Maria N. Gamaletsou
- Laiko General Hospital of Athens and Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Blandine Rammaert
- Université de Poitiers, Faculté de médecine, CHU de Poitiers, INSERM U1070, Poitiers, France
| | - Barry Brause
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Marimelle A. Bueno
- Far Eastern University-Dr. Nicanor Reyes Medical Foundation, Manilla, Philippines
| | | | - Michael W. Henry
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Aspasia Katragkou
- Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Ohio State University School of Medicine, Columbus, Ohio, USA
| | | | - Matthew W. McCarthy
- Weill Cornell Medicine of Cornell University, New York, New York, USA
- New York Presbyterian Hospital, New York, New York, USA
| | - Andy O. Miller
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
| | | | - Zoi Dorothea Pana
- Hippokration General Hospital, Aristotle University School of Health Sciences, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | - Ruta Petraitiene
- Weill Cornell Medicine of Cornell University, New York, New York, USA
| | | | - Emmanuel Roilides
- Hippokration General Hospital, Aristotle University School of Health Sciences, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | | | - Maria Simitsopoulou
- Hippokration General Hospital, Aristotle University School of Health Sciences, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | - Nikolaos V. Sipsas
- Laiko General Hospital of Athens and Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Valérie Zeller
- Groupe Hospitalier Diaconesses-Croix Saint-Simon, Paris, France
| | - Olivier Lortholary
- Université de Paris, Faculté de Médecine, APHP, Hôpital Necker-Enfants Malades, Paris, France
- Institut Pasteur, Unité de Mycologie Moléculaire, CNRS UMR 2000, Paris, France
| | - Thomas J. Walsh
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
- Weill Cornell Medicine of Cornell University, New York, New York, USA
- New York Presbyterian Hospital, New York, New York, USA
- Center for Innovative Therapeutics and Diagnostics, Richmond, Virginia, USA
| |
Collapse
|
4
|
Opoku YK, Asare KK, Ghartey-Quansah G, Afrifa J, Bentsi-Enchill F, Ofori EG, Koomson CK, Kumi-Manu R. Intestinal microbiome–rheumatoid arthritis crosstalk: The therapeutic role of probiotics. Front Microbiol 2022; 13:996031. [PMID: 36329845 PMCID: PMC9623317 DOI: 10.3389/fmicb.2022.996031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a common systemic autoimmune disease with a global health importance. It is characterized by long-term complications, progressive disability and high mortality tied to increased social-economic pressures. RA has an inflammatory microenvironment as one of the major underlying factors together with other complex processes. Although mechanisms underlying the triggering of RA remain partially elusive, microbiota interactions have been implicated. Again, significant alterations in the gut microbiome of RA patients compared to healthy individuals have intimated a chronic inflammatory response due to gut dysbiosis. Against this backdrop, myriads of studies have hinted at the prospective therapeutic role of probiotics as an adjuvant for the management of RA in the quest to correct this dysbiosis. In this article, the major gut microbiome alterations associated with RA are discussed. Subsequently, the role of the gut microbiome dysbiosis in the initiation and progression of RA is highlighted. Lastly, the effect and mechanism of action of probiotics in the amelioration of symptoms and severity of RA are also espoused. Although strain-specific, probiotic supplementation as adjuvant therapy for the management of RA is very promising and warrants more research.
Collapse
Affiliation(s)
- Yeboah Kwaku Opoku
- Department of Biology Education, Faculty of Science Education, University of Education, Winneba, Ghana
- *Correspondence: Yeboah Kwaku Opoku,
| | - Kwame Kumi Asare
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - George Ghartey-Quansah
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Justice Afrifa
- Department of Medical Laboratory Science, University of Cape Coast, Cape Coast, Ghana
| | - Felicity Bentsi-Enchill
- Department of Biology Education, Faculty of Science Education, University of Education, Winneba, Ghana
| | - Eric Gyamerah Ofori
- Department of Biology Education, Faculty of Science Education, University of Education, Winneba, Ghana
| | - Charles Kwesi Koomson
- Department of Integrated Science Education, Faculty of Science Education, University of Education, Winneba, Ghana
| | - Rosemary Kumi-Manu
- Department of Biology Education, Faculty of Science Education, University of Education, Winneba, Ghana
| |
Collapse
|
5
|
Jiang H, Yuan H, Hu H. Irrigation and debridement for knee osteoarthritis patients with suspected infection by intra-articular injection before total knee arthroplasty: a retrospective study. J Orthop Surg Res 2022; 17:176. [PMID: 35331269 PMCID: PMC8943982 DOI: 10.1186/s13018-022-03054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Patients suffer from knee osteoarthritis (KOA) pain may seek for intra-articular injections before total knee arthroplasty (TKA), which have a possibility of causing the joint sepsis. However, the management and clinical outcomes of these patients following TKA remain uncertain. METHODS Patients with a history of intra-articular injection, in which a joint sepsis was suspected, were included. The patients received joint irrigation and debridement (I&D) and antibiotic treatment until serum inflammatory indicators returned to normal level before TKA. The information of joint fluid routine and culture, synovium section and culture, and serum inflammatory indicator values were collected. Range of motion, Knee Society Scores (KSS) and Western Ontario McMaster Universities Osteoarthritis Index (WOMAC) were used for functional evaluations. RESULTS A total of 17 patients with 17 knee joints were included, all with elevated C-reactive protein (CRP) levels (23.5 ± 8.7 mg/L) as well as increased number of white blood cells (WBC) in the aspiration (50.8 ± 15.3) × 109/L, but no positive cultures were found. The culture of synovium detected three positive results: two Staphylococcus epidermidis and one S. aureus. I&D treatment had no obvious effect on the functional outcomes of KOA, but alleviated the joint pain (p < 0.01). Furthermore, we found that I&D pretreatment could increase the operation time with about 10 min longer than the primary TKA (p < 0.01). With respect to TKA outcomes, I&D had a slight influence on the knee flexion (p < 0.01), but no significant difference was identified between the two groups for KSS and WOMAC (all p values > 0.05). In addition, there was no significant difference in complication rates between the two groups in the last follow-up. CONCLUSION I&D treatment is a valuable procedure for suspected knee infection, which has a higher incidence of detecting microorganisms while does not influence the functional outcomes and complication rates of TKA. However, further larger studies are required to confirm these findings.
Collapse
Affiliation(s)
- Haochen Jiang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, People's Republic of China
- Department of Orthopedic Surgery, Xuhui Branch of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Hengfeng Yuan
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, People's Republic of China
| | - Hai Hu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, People's Republic of China.
- Department of Orthopedic Surgery, Xuhui Branch of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China.
| |
Collapse
|
6
|
Jeyaraman M, Muthu S, Sarangan P, Jeyaraman N, Packkyarathinam RP. Ochrobactrum anthropi - An Emerging Opportunistic Pathogen in Musculoskeletal Disorders - A Case Report and Review of Literature. J Orthop Case Rep 2022; 12:85-90. [PMID: 36199934 PMCID: PMC9499045 DOI: 10.13107/jocr.2022.v12.i03.2730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/20/2022] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Ochrobactrum anthropi is an opportunistic and rare human pathogen, which is seen widely in the environment. O. anthropi infections have been reported in both immunocompetent and immunocompromised individuals. There is no proper consensus on the diagnosis and management of O. anthropi related infections. CASE REPORT We report a case of O. anthropi related left distal clavicular osteomyelitis in an immunocompetent individual with an elaborative diagnostic and treatment algorithm for its effective management. CONCLUSION A comprehensive management strategy with a combination of implant removal (if present) with extensive surgical debridement of bone and soft tissue and intravenous antibiotics results in successful eradication of O. anthropi infection.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai, Tamil Nadu, India
- Address of Correspondence: Dr. Madhan Jeyaraman, Department of Orthopaedics, Faculty of Medicine - Sri Lalithambigai Medical College and Hospital, Chennai, Tamil Nadu, India. E-mail:
| | - Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul, Tamil Nadu, India
| | - Prasanna Sarangan
- Department of Microbiology, Shri Sathya Sai Medical College and Research Institute, Chengalpattu, Tamil Nadu, India
| | - Naveen Jeyaraman
- Department of Orthopaedics, Atlas Hospitals, Tiruchirappalli, Tamil Nadu, India
| | | |
Collapse
|
7
|
Mei L, Yang Z, Zhang X, Liu Z, Wang M, Wu X, Chen X, Huang Q, Huang R. Sustained Drug Treatment Alters the Gut Microbiota in Rheumatoid Arthritis. Front Immunol 2021; 12:704089. [PMID: 34721377 PMCID: PMC8551364 DOI: 10.3389/fimmu.2021.704089] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022] Open
Abstract
Several studies have investigated the causative role of the microbiome in the development of rheumatoid arthritis (RA), but changes in the gut microbiome in RA patients during drug treatment have been less well studied. Here, we tracked the longitudinal changes in gut bacteria in 22 RA patients who were randomized into two groups and treated with Huayu-Qiangshen-Tongbi formula (HQT) plus methotrexate (MTX) or leflunomide (LEF) plus MTX. There were differences in the gut microbiome between untreated (at baseline) RA patients and healthy controls, with 37 species being more abundant in the RA patients and 21 species (including Clostridium celatum) being less abundant. Regarding the functional analysis, vitamin K2 biosynthesis was associated with RA-enriched bacteria. Additionally, in RA patients, alterations in gut microbial species appeared to be associated with RA-related clinical indicators through changing various gut microbiome functional pathways. The clinical efficacy of the two treatments was further observed to be similar, but the response trends of RA-related clinical indices in the two treatment groups differed. For example, HQT treatment affected the erythrocyte sedimentation rate (ESR), while LEF treatment affected the C-reactive protein (CRP) level. Further, 11 species and 9 metabolic pathways significantly changed over time in the HQT group (including C. celatum, which increased), while only 4 species and 2 metabolic pathways significantly changed over time in the LEF group. In summary, we studied the alterations in the gut microbiome of RA patients being treated with HQT or LEF. The results provide useful information on the role of the gut microbiota in the pathogenesis of RA, and they also provide potentially effective directions for developing new RA treatments.
Collapse
Affiliation(s)
- Liyan Mei
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Zhihua Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Xiaolin Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Zehao Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Maojie Wang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.,Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Xiaodong Wu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Xiumin Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Qingchun Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Runyue Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine (The Second Affiliated Hospital of Guangzhou University of Chinese Medicine), Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
DMARDs-Gut Microbiota Feedback: Implications in the Response to Therapy. Biomolecules 2020; 10:biom10111479. [PMID: 33114390 PMCID: PMC7692063 DOI: 10.3390/biom10111479] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/10/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
Due to its immunomodulatory effects and the limitation in the radiological damage progression, disease-modifying antirheumatic drugs (DMARDs) work as first-line rheumatoid arthritis (RA) treatment. In recent years, numerous research projects have suggested that the metabolism of DMARDs could have a role in gut dysbiosis, which indicates that the microbiota variability could modify the employment of direct and indirect mechanisms in the response to treatment. The main objective of this review was to understand the gut microbiota bacterial variability in patients with RA, pre and post-treatment with DMARDs, and to identify the possible mechanisms through which microbiota can regulate the response to pharmacological therapy.
Collapse
|