1
|
Galocha-León C, Antich C, Clares-Naveros B, Voltes-Martínez A, Marchal JA, Gálvez-Martín P. Design and Characterization of Biomimetic Hybrid Construct Based on Hyaluronic Acid and Alginate Bioink for Regeneration of Articular Cartilage. Pharmaceutics 2024; 16:1422. [PMID: 39598545 PMCID: PMC11597687 DOI: 10.3390/pharmaceutics16111422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Three-dimensional bioprinting technology has enabled great advances in the treatment of articular cartilage (AC) defects by the biofabrication of biomimetic constructs that restore and/or regenerate damaged tissue. In this sense, the selection of suitable cells and biomaterials to bioprint constructs that mimic the architecture, composition, and functionality of the natural extracellular matrix (ECM) of the native tissue is crucial. In the present study, a novel cartilage-like biomimetic hybrid construct (CBC) was developed by 3D bioprinting to facilitate and promote AC regeneration. Methods: The CBC was biofabricated by the co-bioprinting of a bioink based on hyaluronic acid (HA) and alginate (AL) loaded with human mesenchymal stromal cells (hMSCs), with polylactic acid supporting the biomaterial, in order to mimic the microenvironment and structural properties of native AC, respectively. The CBC was biologically in vitro characterized. In addition, its physiochemical characteristics were evaluated in order to determine if the presence of hMSCs modified its properties. Results: Results from biological analysis demonstrated that CBC supported the high viability and proliferation of hMSCs, facilitating chondrogenesis after 5 weeks in vitro. The evaluation of physicochemical properties in the CBCs confirmed that the CBC developed could be suitable for use in cartilage tissue engineering. Conclusions: The results demonstrated that the use of bioprinted CBCs based on hMSC-AL/HA-bioink for AC repair could enhance the regeneration and/or formation of hyaline cartilaginous tissue.
Collapse
Affiliation(s)
- Cristina Galocha-León
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain; (C.G.-L.); (B.C.-N.)
| | - Cristina Antich
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain; (C.A.); (A.V.-M.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospital of Granada, University of Granada, E-18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18071 Granada, Spain
- BioFab i3D—Biofabrication and 3D (Bio) Printing Laboratory, University of Granada, E-18100 Granada, Spain
| | - Beatriz Clares-Naveros
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain; (C.G.-L.); (B.C.-N.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospital of Granada, University of Granada, E-18100 Granada, Spain
| | - Ana Voltes-Martínez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain; (C.A.); (A.V.-M.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospital of Granada, University of Granada, E-18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18071 Granada, Spain
- BioFab i3D—Biofabrication and 3D (Bio) Printing Laboratory, University of Granada, E-18100 Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain; (C.A.); (A.V.-M.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospital of Granada, University of Granada, E-18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18071 Granada, Spain
- BioFab i3D—Biofabrication and 3D (Bio) Printing Laboratory, University of Granada, E-18100 Granada, Spain
| | | |
Collapse
|
2
|
Thomas J, Chopra V, Rajput S, Guha R, Chattopadhyay N, Ghosh D. Post-Implantation Stiffening by a Bioinspired, Double-Network, Self-Healing Hydrogel Facilitates Minimally Invasive Cell Delivery for Cartilage Regeneration. Biomacromolecules 2023. [PMID: 37376790 DOI: 10.1021/acs.biomac.3c00351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Injectable hydrogels have demonstrated advantages in cartilage repair by enabling the delivery of cells through a minimally invasive approach. However, several injectable hydrogels suffer from rapid degradation and low mechanical strength. Moreover, higher mechanical stiffness in hydrogels can have a detrimental effect on post-implantation cell viability. To address these challenges, we developed an in situ forming bioinspired double network hydrogel (BDNH) that exhibits temperature-dependent stiffening after implantation. The BDNH mimics the microarchitecture of aggrecan, with hyaluronic acid-conjugated poly(N-isopropylacrylamide) providing rigidity and Schiff base crosslinked polymers serving as the ductile counterpart. BDNHs exhibited self-healing property and enhanced stiffness at physiological temperature. Excellent cell viability, long time cell proliferation, and cartilage specific matrix production were observed in the chondrocytes cultured in the BDNH hydrogel. Evidence of cartilage regeneration in a rabbit cartilage defect model using chondrocyte-laden BDNH has suggested it to be a potential candidate for cartilage tissue engineering.
Collapse
Affiliation(s)
- Jijo Thomas
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Vianni Chopra
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Swati Rajput
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, Uttar Pradesh 226031, India
| | - Rajdeep Guha
- Laboratory Animal Facility, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, Uttar Pradesh 226031, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, Uttar Pradesh 226031, India
| | - Deepa Ghosh
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| |
Collapse
|
3
|
Sekar MP, Suresh S, Zennifer A, Sethuraman S, Sundaramurthi D. Hyaluronic Acid as Bioink and Hydrogel Scaffolds for Tissue Engineering Applications. ACS Biomater Sci Eng 2023. [PMID: 37115515 DOI: 10.1021/acsbiomaterials.3c00299] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Bioprinting is an additive manufacturing technique that focuses on developing living tissue constructs using bioinks. Bioink is crucial in determining the stability of printed patterns, which remains a major challenge in bioprinting. Thus, the choices of bioink composition, modifications, and cross-linking methods are being continuously researched to augment the clinical translation of bioprinted constructs. Hyaluronic acid (HA) is a naturally occurring polysaccharide with the repeating unit of N-acetyl-glucosamine and d-glucuronic acid disaccharides. It is present in the extracellular matrix (ECM) of tissues (skin, cartilage, nerve, muscle, etc.) with a wide range of molecular weights. Due to the nature of its chemical structure, HA could be easily subjected to chemical modifications and cross-linking that would enable better printability and stability. These interesting properties have made HA an ideal choice of bioinks for developing tissue constructs for regenerative medicine applications. In this Review, the physicochemical properties, reaction chemistry involved in various cross-linking strategies, and biomedical applications of HA have been elaborately discussed. Further, the features of HA bioinks, emerging strategies in HA bioink preparations, and their applications in 3D bioprinting have been highlighted. Finally, the current challenges and future perspectives in the clinical translation of HA-based bioinks are outlined.
Collapse
Affiliation(s)
- Muthu Parkkavi Sekar
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Shruthy Suresh
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Allen Zennifer
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| |
Collapse
|
4
|
Tissue engineering approaches for the in vitro production of spermatids to treat male infertility: A review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Hydrogel, Electrospun and Composite Materials for Bone/Cartilage and Neural Tissue Engineering. MATERIALS 2021; 14:ma14226899. [PMID: 34832300 PMCID: PMC8624846 DOI: 10.3390/ma14226899] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022]
Abstract
Injuries of the bone/cartilage and central nervous system are still a serious socio-economic problem. They are an effect of diversified, difficult-to-access tissue structures as well as complex regeneration mechanisms. Currently, commercially available materials partially solve this problem, but they do not fulfill all of the bone/cartilage and neural tissue engineering requirements such as mechanical properties, biochemical cues or adequate biodegradation. There are still many things to do to provide complete restoration of injured tissues. Recent reports in bone/cartilage and neural tissue engineering give high hopes in designing scaffolds for complete tissue regeneration. This review thoroughly discusses the advantages and disadvantages of currently available commercial scaffolds and sheds new light on the designing of novel polymeric scaffolds composed of hydrogels, electrospun nanofibers, or hydrogels loaded with nano-additives.
Collapse
|
6
|
Katoh S, Yoshioka H, Senthilkumar R, Preethy S, Abraham SJK. Enhanced miRNA-140 expression of osteoarthritis-affected human chondrocytes cultured in a polymer based three-dimensional (3D) matrix. Life Sci 2021; 278:119553. [PMID: 33932445 DOI: 10.1016/j.lfs.2021.119553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/20/2021] [Accepted: 04/21/2021] [Indexed: 01/05/2023]
Abstract
AIMS We have evaluated the potential of a three-dimensional (3D) thermoreversible gelation polymer (TGP) matrix in enhancing miRNA 140 expression (a biomarker correlating with homeostasis and cartilage regeneration) during the in vitro expansion of osteoarthritis (OA)-affected human chondrocytes. MATERIALS AND METHODS OA-chondrocytes were cultured in two-dimensional (2D) monolayer followed by culture in 3D-TGP. miRNA 140 expression levels in cell culture supernatant followed by expression in the cell lysate of both 2D and 3D-TGP cultures were analyzed. KEY FINDINGS The expression of miRNA 140 in cell culture supernatant from the 3D-TGP group was 0.001 to 0.002% that in 2D culture supernatant while in the cell lysate, miRNA 140 expression in the 3D-TGP was nearly 30-fold higher than that of 2D group. SIGNIFICANCE The 3D-TGP matrix allows enhanced expression of miRNA 140 in OA-affected human chondrocytes in vitro which after necessary validations can be applied in clinical transplantation to significantly improve the outcome.
Collapse
Affiliation(s)
- Shojiro Katoh
- Edogawa Evolutionary Lab of Science, Edogawa Hospital Campus, 2-24-18, Higashi Koiwa, Edogawa, Tokyo 133-0052, Japan; Department of Orthopaedic Surgery, Edogawa Hospital, 2-24-18, Higashi Koiwa, Edogawa, Tokyo 133-0052, Japan
| | - Hiroshi Yoshioka
- Mebiol Inc., 1-25-8, Nakahara, Hiratsuka 254-0075, Kanagawa, Japan
| | - Rajappa Senthilkumar
- The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai 600034, Tamil Nadu, India
| | - Senthilkumar Preethy
- The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai 600034, Tamil Nadu, India
| | - Samuel J K Abraham
- The Mary-Yoshio Translational Hexagon (MYTH), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai 600034, Tamil Nadu, India; JBM Inc., 3-1-14, Higashi Koiwa, Edogawa, Tokyo 133-0052, Japan; University of Yamanashi -Faculty of Medicine, 1110, Shimokato, Chuo, Yamanashi 409-3898, Japan; GN Corporation Co. Ltd., 3-8, Wakamatsu, Kofu, Yamanashi 400-0866, Japan.
| |
Collapse
|