1
|
Palacios-Díaz L, González-Garcia ÁA, Sánchez Urgellés P, Antuña S, Barco R. Biomechanical outcomes of pharmacological therapies for post-traumatic arthrofibrosis in preclinical animal models: a systematic review and meta-analysis. Connect Tissue Res 2024; 65:265-278. [PMID: 38814178 DOI: 10.1080/03008207.2024.2358351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE/AIM OF THE STUDY There is still no evidence of which drug has the greatest therapeutic potential for post-traumatic arthrofibrosis. The aim of this study is to systematically review the literature for quality evidence and perform a meta-analysis about the pharmacological therapies of post-traumatic arthrofibrosis in preclinical models. MATERIALS AND METHODS A comprehensive and systematic search strategy was performed in three databases (MEDLINE, EMBASE and Web of Science) retrieving studies on the effectiveness of pharmacological therapies in the management of post-traumatic arthrofibrosis using preclinical models in terms of biomechanical outcomes. Risk of bias assessment was performed using the SYRCLE's risk of bias tool. A meta-analysis using a random-effects model was conducted if a minimum of three studies reported homogeneous outcomes for drugs with the same action mechanism. RESULTS Forty-six studies were included in the systematic review and evaluated for risk of bias. Drugs from 6 different action mechanisms of 21 studies were included in the meta-analysis. Overall, the methodological quality of the studies was poor. Statistically significant overall effect in favor of reducing contracture was present for anti-histamines (Chi2 p = 0.75, I2 = 0%; SMD (Standardized Mean Difference) = -1.30, 95%CI: -1.64 to -0.95, p < 0.00001) and NSAIDs (Chi2 p = 0.01, I2 = 63%; SMD= -0.93, 95%CI: -1.58 to -0.28, p = 0.005). CONCLUSIONS Anti-histamines, particularly ketotifen, have the strongest evidence of efficacy for prevention of post-traumatic arthrofibrosis. Some studies suggest a potential role for NSAIDs, particularly celecoxib, although heterogeneity among the included studies is significant.
Collapse
Affiliation(s)
- Luis Palacios-Díaz
- Upper Limb Surgery Unit, Orthopaedics and Traumatology Department, La Paz University Hospital, Madrid, Spain
| | | | - Pablo Sánchez Urgellés
- Upper Limb Surgery Unit, Orthopaedics and Traumatology Department, La Paz University Hospital, Madrid, Spain
| | - Samuel Antuña
- Upper Limb Surgery Unit, Orthopaedics and Traumatology Department, La Paz University Hospital, Madrid, Spain
| | - Raúl Barco
- Upper Limb Surgery Unit, Orthopaedics and Traumatology Department, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
2
|
Fan Y, Yuh J, Lekkala S, Asik MD, Thomson A, McCanne M, Randolph MA, Chen AF, Oral E. The efficacy of vitamin E in preventing arthrofibrosis after joint replacement. Animal Model Exp Med 2024; 7:145-155. [PMID: 38525803 PMCID: PMC11079150 DOI: 10.1002/ame2.12388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/10/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Arthrofibrosis is a joint disorder characterized by excessive scar formation in the joint tissues. Vitamin E is an antioxidant with potential anti-fibroblastic effect. The aim of this study was to establish an arthrofibrosis rat model after joint replacement and assess the effects of vitamin E supplementation on joint fibrosis. METHODS We simulated knee replacement in 16 male Sprague-Dawley rats. We immobilized the surgical leg with a suture in full flexion. The control groups were killed at 2 and 12 weeks (n = 5 per group), and the test group was supplemented daily with vitamin E (0.2 mg/mL) in their drinking water for 12 weeks (n = 6). We performed histological staining to investigate the presence and severity of arthrofibrosis. Immunofluorescent staining and α2-macroglobulin (α2M) enzyme-linked immunosorbent assay (ELISA) were used to assess local and systemic inflammation. Static weight bearing (total internal reflection) and range of motion (ROM) were collected for functional assessment. RESULTS The ROM and weight-bearing symmetry decreased after the procedure and recovered slowly with still significant deficit at the end of the study for both groups. Histological analysis confirmed fibrosis in both lateral and posterior periarticular tissue. Vitamin E supplementation showed a moderate anti-inflammatory effect on the local and systemic levels. The vitamin E group exhibited significant improvement in ROM and weight-bearing symmetry at day 84 compared to the control group. CONCLUSIONS This model is viable for simulating arthrofibrosis after joint replacement. Vitamin E may benefit postsurgical arthrofibrosis, and further studies are needed for dosing requirements.
Collapse
Affiliation(s)
- Yingfang Fan
- Harris Orthopaedic Laboratory, Department of Orthopaedic SurgeryMassachusetts General HospitalBostonMassachusettsUSA
- Department of Orthopaedic SurgeryHarvard Medical SchoolBostonMassachusettsUSA
| | - Jean Yuh
- Harris Orthopaedic Laboratory, Department of Orthopaedic SurgeryMassachusetts General HospitalBostonMassachusettsUSA
| | - Sashank Lekkala
- Harris Orthopaedic Laboratory, Department of Orthopaedic SurgeryMassachusetts General HospitalBostonMassachusettsUSA
| | - Mehmet D. Asik
- Harris Orthopaedic Laboratory, Department of Orthopaedic SurgeryMassachusetts General HospitalBostonMassachusettsUSA
- Department of Orthopaedic SurgeryHarvard Medical SchoolBostonMassachusettsUSA
| | - Andrew Thomson
- Harris Orthopaedic Laboratory, Department of Orthopaedic SurgeryMassachusetts General HospitalBostonMassachusettsUSA
| | - Madeline McCanne
- Harris Orthopaedic Laboratory, Department of Orthopaedic SurgeryMassachusetts General HospitalBostonMassachusettsUSA
| | - Mark A. Randolph
- Department of Orthopaedic SurgeryHarvard Medical SchoolBostonMassachusettsUSA
- Department of SurgeryHarvard Medical SchoolBostonMassachusettsUSA
| | - Antonia F. Chen
- Department of Orthopaedic SurgeryBrigham and Women's HospitalBostonMassachusettsUSA
| | - Ebru Oral
- Harris Orthopaedic Laboratory, Department of Orthopaedic SurgeryMassachusetts General HospitalBostonMassachusettsUSA
- Department of Orthopaedic SurgeryHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
3
|
Dagneaux L, Limberg AK, Owen AR, Bettencourt JW, Dudakovic A, Bayram B, Gades NM, Sanchez-Sotelo J, Berry DJ, van Wijnen A, Morrey ME, Abdel MP. Knee immobilization reproduces key arthrofibrotic phenotypes in mice. Bone Joint Res 2023; 12:58-71. [PMID: 36647696 PMCID: PMC9872038 DOI: 10.1302/2046-3758.121.bjr-2022-0250.r2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AIMS As has been shown in larger animal models, knee immobilization can lead to arthrofibrotic phenotypes. Our study included 168 C57BL/6J female mice, with 24 serving as controls, and 144 undergoing a knee procedure to induce a contracture without osteoarthritis (OA). METHODS Experimental knees were immobilized for either four weeks (72 mice) or eight weeks (72 mice), followed by a remobilization period of zero weeks (24 mice), two weeks (24 mice), or four weeks (24 mice) after suture removal. Half of the experimental knees also received an intra-articular injury. Biomechanical data were collected to measure passive extension angle (PEA). Histological data measuring area and thickness of posterior and anterior knee capsules were collected from knee sections. RESULTS Experimental knees immobilized for four weeks demonstrated mean PEAs of 141°, 72°, and 79° after zero, two, and four weeks of remobilization (n = 6 per group), respectively. Experimental knees demonstrated reduced PEAs after two weeks (p < 0.001) and four weeks (p < 0.0001) of remobilization compared to controls. Following eight weeks of immobilization, experimental knees exhibited mean PEAs of 82°, 73°, and 72° after zero, two, and four weeks of remobilization, respectively. Histological analysis demonstrated no cartilage degeneration. Similar trends in biomechanical and histological properties were observed when intra-articular violation was introduced. CONCLUSION This study established a novel mouse model of robust knee contracture without evidence of OA. This was appreciated consistently after eight weeks of immobilization and was irrespective of length of remobilization. As such, this arthrofibrotic model provides opportunities to investigate molecular pathways and therapeutic strategies.Cite this article: Bone Joint Res 2023;12(1):58-71.
Collapse
Affiliation(s)
- Louis Dagneaux
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Afton K. Limberg
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Aaron R. Owen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Banu Bayram
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Naomi M. Gades
- Department of Comparative Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | | | - Daniel J. Berry
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Andre van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA,Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
| | - Mark E. Morrey
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew P. Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA, Matthew P. Abdel. E-mail:
| |
Collapse
|