• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4640428)   Today's Articles (1091)   Subscriber (50383)
For: Shao YH, Chen WJ, Wang Z, Li CN, Deng NY. Weighted linear loss twin support vector machine for large-scale classification. Knowl Based Syst 2015. [DOI: 10.1016/j.knosys.2014.10.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Number Cited by Other Article(s)
1
Li Y, Sun H. Safe sample screening for robust twin support vector machine. APPL INTELL 2023. [DOI: 10.1007/s10489-023-04547-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
2
Union nonparallel support vector machines framework with consistency. Appl Soft Comput 2023. [DOI: 10.1016/j.asoc.2023.110129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
3
Non-parallel bounded support matrix machine and its application in roller bearing fault diagnosis. Inf Sci (N Y) 2023. [DOI: 10.1016/j.ins.2022.12.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
4
TSVM-M3: Twin support vector machine based on multi-order moment matching for large-scale multi-class classification. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.109506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
5
Zhou K, Zhang Q, Li J. TSVMPath: Fast Regularization Parameter Tuning Algorithm for Twin Support Vector Machine. Neural Process Lett 2022. [DOI: 10.1007/s11063-022-10870-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
6
Sharma A. Nature Inspired Algorithms with Randomized Hypercomputational Perspective. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
7
Diao H, Lu Y, Deng A, Zou L, Li X, Pedrycz W. Convolutional rule inference network based on belief rule-based system using an evidential reasoning approach. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2021.107713] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
8
Fan Y, Lu X, Zhao J, Fu H, Liu Y. Estimating individualized treatment rules for treatments with hierarchical structure. Electron J Stat 2022. [DOI: 10.1214/21-ejs1948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
9
Xu W, Huang D, Zhou S. Universal consistency of twin support vector machines. INT J MACH LEARN CYB 2021. [DOI: 10.1007/s13042-021-01281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
10
Zhu W, Chang L, Sun J, Wu G, Xu X, Xu X. Parallel multipopulation optimization for belief rule base learning. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2020.09.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
11
Ma J, Yang L, Sun Q. Adaptive robust learning framework for twin support vector machine classification. Knowl Based Syst 2021. [DOI: 10.1016/j.knosys.2020.106536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
12
Gao F, Zhang A, Bi W, Ma J. A greedy belief rule base generation and learning method for classification problem. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2020.106856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
13
Liu MZ, Shao YH, Li CN, Chen WJ. Smooth pinball loss nonparallel support vector machine for robust classification. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2020.106840] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
14
Fan Y, Lu X, Liu Y, Zhao J. Angle-Based Hierarchical Classification Using Exact Label Embedding. J Am Stat Assoc 2020. [DOI: 10.1080/01621459.2020.1801450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
15
Zhang A, Gao F, Yang M, Bi W. A new rule reduction and training method for extended belief rule base based on DBSCAN algorithm. Int J Approx Reason 2020. [DOI: 10.1016/j.ijar.2019.12.016 10.1016/j.ijar.2019.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
16
Zhang A, Gao F, Yang M, Bi W. A new rule reduction and training method for extended belief rule base based on DBSCAN algorithm. Int J Approx Reason 2020. [DOI: 10.1016/j.ijar.2019.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
17
A new adaptive weighted imbalanced data classifier via improved support vector machines with high-dimension nature. Knowl Based Syst 2019. [DOI: 10.1016/j.knosys.2019.104933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
18
Jalayeri S, Abdolrazzagh-Nezhad M. Chemical reaction optimization to disease diagnosis by optimizing hyper-planes classifiers. Soft comput 2019. [DOI: 10.1007/s00500-019-03869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
19
Wu W, Xu Y. Accelerating improved twin support vector machine with safe screening rule. INT J MACH LEARN CYB 2019. [DOI: 10.1007/s13042-019-00946-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
20
Wang C, Ye Q, Luo P, Ye N, Fu L. Robust capped L1-norm twin support vector machine. Neural Netw 2019;114:47-59. [PMID: 30878915 DOI: 10.1016/j.neunet.2019.01.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/01/2022]
21
Fuzzy semi-supervised weighted linear loss twin support vector clustering. Knowl Based Syst 2019. [DOI: 10.1016/j.knosys.2018.11.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
22
Automated Identification System for Focal EEG Signals Using Fractal Dimension of FAWT-Based Sub-bands Signals. ADVANCES IN INTELLIGENT SYSTEMS AND COMPUTING 2019. [DOI: 10.1007/978-981-13-0923-6_50] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
23
Are twin hyperplanes necessary? Pattern Recognit Lett 2018. [DOI: 10.1016/j.patrec.2018.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
24
Yang Z, Pan X, Xu Y. Piecewise linear solution path for pinball twin support vector machine. Knowl Based Syst 2018. [DOI: 10.1016/j.knosys.2018.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
25
Extended belief-rule-based system with new activation rule determination and weight calculation for classification problems. Appl Soft Comput 2018. [DOI: 10.1016/j.asoc.2018.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
26
Huang H, Wei X, Zhou Y. Twin support vector machines: A survey. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.01.093] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
27
Gupta D, Richhariya B. Entropy based fuzzy least squares twin support vector machine for class imbalance learning. APPL INTELL 2018. [DOI: 10.1007/s10489-018-1204-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
28
Yang LH, Wang YM, Fu YG. A consistency analysis-based rule activation method for extended belief-rule-based systems. Inf Sci (N Y) 2018. [DOI: 10.1016/j.ins.2018.02.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
29
Pan X, Yang Z, Xu Y, Wang L. Safe Screening Rules for Accelerating Twin Support Vector Machine Classification. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018;29:1876-1887. [PMID: 28422692 DOI: 10.1109/tnnls.2017.2688182] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
30
Yang Z, Xu Y. A safe accelerative approach for pinball support vector machine classifier. Knowl Based Syst 2018. [DOI: 10.1016/j.knosys.2018.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
31
Li D, Zhang H, Khan MS, Mi F. A self-adaptive frequency selection common spatial pattern and least squares twin support vector machine for motor imagery electroencephalography recognition. Biomed Signal Process Control 2018. [DOI: 10.1016/j.bspc.2017.11.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
32
A review on multi-class TWSVM. Artif Intell Rev 2017. [DOI: 10.1007/s10462-017-9586-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
33
Gupta D. Training primal K-nearest neighbor based weighted twin support vector regression via unconstrained convex minimization. APPL INTELL 2017. [DOI: 10.1007/s10489-017-0913-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
34
A data envelopment analysis (DEA)-based method for rule reduction in extended belief-rule-based systems. Knowl Based Syst 2017. [DOI: 10.1016/j.knosys.2017.02.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
35
An improved multiple birth support vector machine for pattern classification. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2016.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
36
Ye YF, Bai L, Hua XY, Shao YH, Wang Z, Deng NY. Weighted Lagrange ε -twin support vector regression. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2016.01.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
37
Chang L, Zhou Z, You Y, Yang L, Zhou Z. Belief rule based expert system for classification problems with new rule activation and weight calculation procedures. Inf Sci (N Y) 2016. [DOI: 10.1016/j.ins.2015.12.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
38
Robust energy-based least squares twin support vector machines. APPL INTELL 2016. [DOI: 10.1007/s10489-015-0751-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
39
A novel parametric-insensitive nonparallel support vector machine for regression. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
40
Zeng M, Yang Y, Cheng J. A generalized Gilbert algorithm and an improved MIES for one-class support vector machine. Knowl Based Syst 2015. [DOI: 10.1016/j.knosys.2015.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
41
K-nearest neighbor based structural twin support vector machine. Knowl Based Syst 2015. [DOI: 10.1016/j.knosys.2015.08.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
42
Tomar D, Agarwal S. A comparison on multi-class classification methods based on least squares twin support vector machine. Knowl Based Syst 2015. [DOI: 10.1016/j.knosys.2015.02.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA