1
|
Merchant AM, Shenoy N, Lanka S, Kamath S. Ensemble neural models for ICD code prediction using unstructured and structured healthcare data. Heliyon 2024; 10:e36569. [PMID: 39281478 PMCID: PMC11402122 DOI: 10.1016/j.heliyon.2024.e36569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Disease coding is the process of assigning one or more standardized diagnostic codes to clinical notes that are maintained by health practitioners (e.g. clinicians) to track patient condition. Such a coding process is often expensive and error-prone, as human medical coders primarily perform it. Automating diagnostic coding using Artificial Intelligence is seen as an essential solution in Hospital Information Management Systems and approaches built on Convolutional Neural Networks currently perform best. In this work, a neural model built on unstructured clinical text for enabling automatic diagnostic coding for given patient discharge summaries is proposed. We incorporate a structured self-attention mechanism designed to boost learning of label-specific vectors and the significant clinical text snippets associated with a certain label for this purpose. These vectors are then combined with a novel code description pipeline leveraging the descriptions provided for each standardized diagnostic code. The proposed model achieved best performance in terms of standard metrics over the MIMIC-III dataset, outperforming models based on Longformers and Knowledge graphs. Furthermore, to leverage structured clinical data to enhance the proposed model, and to enable improved diagnostic code prediction, model ensembling is considered. A neural model built on structured data by leveraging supervised machine learning algorithms such as random forest and boosting, is designed for multi-class code classification. Experimental results revealed that the proposed ensemble models show promising performance compared to traditional models that rely solely on unstructured or structured clinical data, emphasizing their suitability for real-world deployment.
Collapse
Affiliation(s)
- Alimurtaza Mustafa Merchant
- Healthcare Analytics and Language Engineering (HALE) Lab, Department of Information Technology, National Institute of Technology Karnataka, Surathkal, Srinivas Nagar P.O., Mangalore, 575025, Karnataka, India
| | - Naveen Shenoy
- Healthcare Analytics and Language Engineering (HALE) Lab, Department of Information Technology, National Institute of Technology Karnataka, Surathkal, Srinivas Nagar P.O., Mangalore, 575025, Karnataka, India
| | - Sidharth Lanka
- Healthcare Analytics and Language Engineering (HALE) Lab, Department of Information Technology, National Institute of Technology Karnataka, Surathkal, Srinivas Nagar P.O., Mangalore, 575025, Karnataka, India
| | - Sowmya Kamath
- Healthcare Analytics and Language Engineering (HALE) Lab, Department of Information Technology, National Institute of Technology Karnataka, Surathkal, Srinivas Nagar P.O., Mangalore, 575025, Karnataka, India
| |
Collapse
|
2
|
Zulbayar S, Mollayeva T, Colantonio A, Chan V, Escobar M. Integrating unsupervised and supervised learning techniques to predict traumatic brain injury: A population-based study. INTELLIGENCE-BASED MEDICINE 2023; 8:100118. [PMID: 38222038 PMCID: PMC10785655 DOI: 10.1016/j.ibmed.2023.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
This work aimed to identify pre-existing health conditions of patients with traumatic brain injury (TBI) and develop predictive models for the first TBI event and its external causes by employing a combination of unsupervised and supervised learning algorithms. We acquired up to five years of pre-injury diagnoses for 488,107 patients with TBI and 488,107 matched control patients who entered the emergency department or acute care hospitals between April 1st, 2002, and March 31st, 2020. Diagnoses were obtained from the Ontario Health Insurance Plan (OHIP) database which contains province-wide claims data by physicians in Ontario, Canada for inpatient and outpatient services. A screening process was conducted on the OHIP diagnostic codes to limit the subsequent analysis to codes that were predictive of TBI, which concluded that 314 codes were significantly associated with TBI. The Latent Dirichlet Allocation (LDA) model was applied to the diagnostic codes and generated an optimal number of 19 topics that concur with published literature but also suggest other unexplored areas. Estimated word-topic probabilities from the LDA model helped us detect pre-morbid conditions among patients with TBI by uncovering the underlying patterns of diagnoses, meanwhile estimated document-topic probabilities were utilized in variable creation as form of a dimension reduction. We created 19 topic scores for each patient in the cohort which were utilized along with socio-demographic factors for Random Forest binary classifier models. Test set performances evaluated using area under the receiver operating characteristic curve (AUC) were: TBI event (AUC = 0.85), external cause of injury: falls (AUC = 0.85), struck by/against (AUC = 0.83), cyclist collision (AUC = 0.76), motor vehicle collision (AUC = 0.83). Our analysis successfully demonstrated the feasibility of using machine learning to predict TBI due to various external causes and identified the most important factors that contribute to this prediction.
Collapse
Affiliation(s)
- Suvd Zulbayar
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
- Institute of Health and Policy, Management and Evaluation, University of Toronto, M5T 3M6, Canada
| | - Tatyana Mollayeva
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
- Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada
- Acquired Brain Injury Research Lab, Department of Occupational Science and Occupational Therapy, University of Toronto, Toronto, ON M5G 1V7, Canada
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, ON M5G 2A2, Canada
| | - Angela Colantonio
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
- Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada
- Acquired Brain Injury Research Lab, Department of Occupational Science and Occupational Therapy, University of Toronto, Toronto, ON M5G 1V7, Canada
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, ON M5G 2A2, Canada
- Institute of Health and Policy, Management and Evaluation, University of Toronto, M5T 3M6, Canada
- ICES, Toronto, ON, M4N 3M5, Canada
| | - Vincy Chan
- Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada
- Acquired Brain Injury Research Lab, Department of Occupational Science and Occupational Therapy, University of Toronto, Toronto, ON M5G 1V7, Canada
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, ON M5G 2A2, Canada
- Institute of Health and Policy, Management and Evaluation, University of Toronto, M5T 3M6, Canada
| | - Michael Escobar
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| |
Collapse
|
3
|
Masud JHB, Kuo CC, Yeh CY, Yang HC, Lin MC. Applying Deep Learning Model to Predict Diagnosis Code of Medical Records. Diagnostics (Basel) 2023; 13:2297. [PMID: 37443689 DOI: 10.3390/diagnostics13132297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The International Classification of Diseases (ICD) code is a diagnostic classification standard that is frequently used as a referencing system in healthcare and insurance. However, it takes time and effort to find and use the right diagnosis code based on a patient's medical records. In response, deep learning (DL) methods have been developed to assist physicians in the ICD coding process. Our findings propose a deep learning model that utilized clinical notes from medical records to predict ICD-10 codes. Our research used text-based medical data from the outpatient department (OPD) of a university hospital from January to December 2016. The dataset used clinical notes from five departments, and a total of 21,953 medical records were collected. Clinical notes consisted of a subjective component, objective component, assessment, plan (SOAP) notes, diagnosis code, and a drug list. The dataset was divided into two groups: 90% for training and 10% for test cases. We applied natural language processing (NLP) technique (word embedding, Word2Vector) to process the data. A deep learning-based convolutional neural network (CNN) model was created based on the information presented above. Three metrics (precision, recall, and F-score) were used to calculate the achievement of the deep learning CNN model. Clinically acceptable results were achieved through the deep learning model for five departments (precision: 0.53-0.96; recall: 0.85-0.99; and F-score: 0.65-0.98). With a precision of 0.95, a recall of 0.99, and an F-score of 0.98, the deep learning model performed the best in the department of cardiology. Our proposed CNN model significantly improved the prediction performance for an automated ICD-10 code prediction system based on prior clinical information. This CNN model could reduce the laborious task of manual coding and could assist physicians in making a better diagnosis.
Collapse
Affiliation(s)
- Jakir Hossain Bhuiyan Masud
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Chen-Cheng Kuo
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Yang Yeh
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsuan-Chia Yang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- International Center for Health Information Technology (ICHIT), College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Ming-Chin Lin
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
4
|
Chiu CC, Wu CM, Chien TN, Kao LJ, Li C, Chu CM. Integrating Structured and Unstructured EHR Data for Predicting Mortality by Machine Learning and Latent Dirichlet Allocation Method. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4340. [PMID: 36901354 PMCID: PMC10001457 DOI: 10.3390/ijerph20054340] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
An ICU is a critical care unit that provides advanced medical support and continuous monitoring for patients with severe illnesses or injuries. Predicting the mortality rate of ICU patients can not only improve patient outcomes, but also optimize resource allocation. Many studies have attempted to create scoring systems and models that predict the mortality of ICU patients using large amounts of structured clinical data. However, unstructured clinical data recorded during patient admission, such as notes made by physicians, is often overlooked. This study used the MIMIC-III database to predict mortality in ICU patients. In the first part of the study, only eight structured variables were used, including the six basic vital signs, the GCS, and the patient's age at admission. In the second part, unstructured predictor variables were extracted from the initial diagnosis made by physicians when the patients were admitted to the hospital and analyzed using Latent Dirichlet Allocation techniques. The structured and unstructured data were combined using machine learning methods to create a mortality risk prediction model for ICU patients. The results showed that combining structured and unstructured data improved the accuracy of the prediction of clinical outcomes in ICU patients over time. The model achieved an AUROC of 0.88, indicating accurate prediction of patient vital status. Additionally, the model was able to predict patient clinical outcomes over time, successfully identifying important variables. This study demonstrated that a small number of easily collectible structured variables, combined with unstructured data and analyzed using LDA topic modeling, can significantly improve the predictive performance of a mortality risk prediction model for ICU patients. These results suggest that initial clinical observations and diagnoses of ICU patients contain valuable information that can aid ICU medical and nursing staff in making important clinical decisions.
Collapse
Affiliation(s)
- Chih-Chou Chiu
- Department of Business Management, National Taipei University of Technology, Taipei 106, Taiwan
| | - Chung-Min Wu
- Department of Business Management, National Taipei University of Technology, Taipei 106, Taiwan
| | - Te-Nien Chien
- College of Management, National Taipei University of Technology, Taipei 106, Taiwan
| | - Ling-Jing Kao
- Department of Business Management, National Taipei University of Technology, Taipei 106, Taiwan
| | - Chengcheng Li
- College of Management, National Taipei University of Technology, Taipei 106, Taiwan
| | - Chuan-Mei Chu
- College of Management, National Taipei University of Technology, Taipei 106, Taiwan
| |
Collapse
|
5
|
Chiu CC, Wu CM, Chien TN, Kao LJ, Li C, Jiang HL. Applying an Improved Stacking Ensemble Model to Predict the Mortality of ICU Patients with Heart Failure. J Clin Med 2022; 11:6460. [PMID: 36362686 PMCID: PMC9659015 DOI: 10.3390/jcm11216460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 08/31/2023] Open
Abstract
Cardiovascular diseases have been identified as one of the top three causes of death worldwide, with onset and deaths mostly due to heart failure (HF). In ICU, where patients with HF are at increased risk of death and consume significant medical resources, early and accurate prediction of the time of death for patients at high risk of death would enable them to receive appropriate and timely medical care. The data for this study were obtained from the MIMIC-III database, where we collected vital signs and tests for 6699 HF patient during the first 24 h of their first ICU admission. In order to predict the mortality of HF patients in ICUs more precisely, an integrated stacking model is proposed and applied in this paper. In the first stage of dataset classification, the datasets were subjected to first-level classifiers using RF, SVC, KNN, LGBM, Bagging, and Adaboost. Then, the fusion of these six classifier decisions was used to construct and optimize the stacked set of second-level classifiers. The results indicate that our model obtained an accuracy of 95.25% and AUROC of 82.55% in predicting the mortality rate of HF patients, which demonstrates the outstanding capability and efficiency of our method. In addition, the results of this study also revealed that platelets, glucose, and blood urea nitrogen were the clinical features that had the greatest impact on model prediction. The results of this analysis not only improve the understanding of patients' conditions by healthcare professionals but allow for a more optimal use of healthcare resources.
Collapse
Affiliation(s)
- Chih-Chou Chiu
- Department of Business Management, National Taipei University of Technology, Taipei 106, Taiwan
| | - Chung-Min Wu
- Department of Business Management, National Taipei University of Technology, Taipei 106, Taiwan
| | - Te-Nien Chien
- College of Management, National Taipei University of Technology, Taipei 106, Taiwan
| | - Ling-Jing Kao
- Department of Business Management, National Taipei University of Technology, Taipei 106, Taiwan
| | - Chengcheng Li
- College of Management, National Taipei University of Technology, Taipei 106, Taiwan
| | - Han-Ling Jiang
- Alliance Manchester Business School, University of Manchester, Manchester M15 6PB, UK
| |
Collapse
|
6
|
Natural Language Processing Techniques for Text Classification of Biomedical Documents: A Systematic Review. INFORMATION 2022. [DOI: 10.3390/info13100499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The classification of biomedical literature is engaged in a number of critical issues that physicians are expected to answer. In many cases, these issues are extremely difficult. This can be conducted for jobs such as diagnosis and treatment, as well as efficient representations of ideas such as medications, procedure codes, and patient visits, as well as in the quick search of a document or disease classification. Pathologies are being sought from clinical notes, among other sources. The goal of this systematic review is to analyze the literature on various problems of classification of medical texts of patients based on criteria such as: the quality of the evaluation metrics used, the different methods of machine learning applied, the different data sets, to highlight the best methods in this type of problem, and to identify the different challenges associated. The study covers the period from 1 January 2016 to 10 July 2022. We used multiple databases and archives of research articles, including Web Of Science, Scopus, MDPI, arXiv, IEEE, and ACM, to find 894 articles dealing with the subject of text classification, which we were able to filter using inclusion and exclusion criteria. Following a thorough review, we selected 33 articles dealing with biological text categorization issues. Following our investigation, we discovered two major issues linked to the methodology and data used for biomedical text classification. First, there is the data-centric challenge, followed by the data quality challenge.
Collapse
|
7
|
Chiu CC, Wu CM, Chien TN, Kao LJ, Qiu JT. Predicting the Mortality of ICU Patients by Topic Model with Machine-Learning Techniques. Healthcare (Basel) 2022; 10:healthcare10061087. [PMID: 35742138 PMCID: PMC9222812 DOI: 10.3390/healthcare10061087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Predicting clinical patients’ vital signs is a leading critical issue in intensive care units (ICUs) related studies. Early prediction of the mortality of ICU patients can reduce the overall mortality and cost of complication treatment. Some studies have predicted mortality based on electronic health record (EHR) data by using machine learning models. However, the semi-structured data (i.e., patients’ diagnosis data and inspection reports) is rarely used in these models. This study utilized data from the Medical Information Mart for Intensive Care III. We used a Latent Dirichlet Allocation (LDA) model to classify text in the semi-structured data of some particular topics and established and compared the classification and regression trees (CART), logistic regression (LR), multivariate adaptive regression splines (MARS), random forest (RF), and gradient boosting (GB). A total of 46,520 ICU Patients were included, with 11.5% mortality in the Medical Information Mart for Intensive Care III group. Our results revealed that the semi-structured data (diagnosis data and inspection reports) of ICU patients contain useful information that can assist clinical doctors in making critical clinical decisions. In addition, in our comparison of five machine learning models (CART, LR, MARS, RF, and GB), the GB model showed the best performance with the highest area under the receiver operating characteristic curve (AUROC) (0.9280), specificity (93.16%), and sensitivity (83.25%). The RF, LR, and MARS models showed better performance (AUROC are 0.9096, 0.8987, and 0.8935, respectively) than the CART (0.8511). The GB model showed better performance than other machine learning models (CART, LR, MARS, and RF) in predicting the mortality of patients in the intensive care unit. The analysis results could be used to develop a clinically useful decision support system.
Collapse
Affiliation(s)
- Chih-Chou Chiu
- Department of Business Management, National Taipei University of Technology, Taipei 106, Taiwan; (C.-C.C.); (C.-M.W.); (L.-J.K.)
| | - Chung-Min Wu
- Department of Business Management, National Taipei University of Technology, Taipei 106, Taiwan; (C.-C.C.); (C.-M.W.); (L.-J.K.)
| | - Te-Nien Chien
- College of Management, National Taipei University of Technology, Taipei 106, Taiwan
- Correspondence: ; Tel.: +886-2-2771-2171 (ext. 3403)
| | - Ling-Jing Kao
- Department of Business Management, National Taipei University of Technology, Taipei 106, Taiwan; (C.-C.C.); (C.-M.W.); (L.-J.K.)
| | - Jiantai Timothy Qiu
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei 110, Taiwan;
- College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
8
|
Abstract
The International Classification of Diseases (ICD) is a globally recognized medical classification system that aids in the identification of diseases and the regulation of health trends. The ICD framework makes it easy to keep track of records and evaluate medical data for evidence-based decision-making. Several methods have predicted ICD-9 codes based on the discharge summary, clinical notes, and nursing notes. In our study, our approach only utilizes the subjective component to predict ICD-9 codes. Data cleaning and segmentation, and Natural Language Processing (NLP) techniques are applied on the subjective component during the pre-processing. Our study builds the Long Short-Term Memory (LSTM) and the Gated Recurrent Unit (GRU) to develop a model for predicting ICD-9 codes. The ICD-9 codes contain different ICD levels such as chapter, block, three-digit code, and full code. The GRU model scores the highest recall of 57.91% in the chapter level and the top-10 experiment has a recall of 67.37%. Based on the subjective component, the model can help patients in the form of a remote assistance tool.
Collapse
|
9
|
Yu K, Yang Z, Wu C, Huang Y, Xie X. In-hospital resource utilization prediction from electronic medical records with deep learning. Knowl Based Syst 2021. [DOI: 10.1016/j.knosys.2021.107052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Prabhakar A, Srinivasan S, Krishnan GS, Kamath SS. Diagnostic Code Group Prediction by Integrating Structured and Unstructured Clinical Data. BIG DATA ANALYTICS 2021. [DOI: 10.1007/978-3-030-93620-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
11
|
Applying Convolutional Neural Networks to Predict the ICD-9 Codes of Medical Records. SENSORS 2020; 20:s20247116. [PMID: 33322566 PMCID: PMC7763505 DOI: 10.3390/s20247116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022]
Abstract
The International Statistical Classification of Disease and Related Health Problems (ICD) is an international standard system for categorizing and reporting diseases, injuries, disorders, and health conditions. Most previously-proposed disease predicting systems need clinical information collected by the medical staff from the patients in hospitals. In this paper, we propose a deep learning algorithm to classify disease types and identify diagnostic codes by using only the subjective component of progress notes in medical records. In this study, we have a dataset, consisting of about one hundred and sixty-eight thousand medical records, from a medical center, collected during 2003 and 2017. First, we apply standard text processing procedures to parse the sentences and word embedding techniques for vector representations. Next, we build a convolution neural network model on the medical records to predict the ICD-9 code by using a subjective component of the progress note. The prediction performance is evaluated by ten-fold cross-validation and yields an accuracy of 0.409, recall of 0.409 and precision of 0.436. If we only consider the “chapter match” of ICD-9 code, our model achieves an accuracy of 0.580, recall of 0.580, and precision of 0.582. Since our diagnostic code prediction model is solely based on subjective components (mainly, patients’ self-report descriptions), the proposed approach could serve as a remote and self-diagnosis assistance tool, prior to seeking medical advice or going to the hospital. In addition, our work may be used as a primary evaluation tool for discomfort in the rural area where medical resources are restricted.
Collapse
|
12
|
Gangavarapu T, Jaidhar CD, Chanduka B. Applicability of machine learning in spam and phishing email filtering: review and approaches. Artif Intell Rev 2020. [DOI: 10.1007/s10462-020-09814-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|