1
|
Feng Z, Zhou R, Xia W, Wang S, Liu Y, Huang Z, Gan H. PDFF-CNN: An attention-guided dynamic multi-orientation feature fusion method for gestational age prediction on imbalanced fetal brain MRI dataset. Med Phys 2024; 51:3480-3494. [PMID: 38043088 DOI: 10.1002/mp.16875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/02/2023] [Accepted: 11/19/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND Fetal brain magnetic resonance imaging (MRI)-based gestational age prediction has been widely used to characterize normal fetal brain development and diagnose congenital brain malformations. PURPOSE The uncertainty of fetal position and external interference leads to variable localization and direction of the fetal brain. In addition, pregnant women typically concentrate on receiving MRI scans during the fetal anomaly scanning week, leading to an imbalanced distribution of fetal brain MRI data. The above-mentioned problems pose great challenges for deep learning-based fetal brain MRI gestational age prediction. METHODS In this study, a pyramid squeeze attention (PSA)-guided dynamic feature fusion CNN (PDFF-CNN) is proposed to robustly predict gestational ages from fetal brain MRI images on an imbalanced dataset. PDFF-CNN contains four components: transformation module, feature extraction module, dynamic feature fusion module, and balanced mean square error (MSE) loss. The transformation and feature extraction modules are employed by using the PSA to learn multiscale and multi-orientation feature representations in a parallel weight-sharing Siamese network. The dynamic feature fusion module automatically learns the weights of feature vectors generated in the feature extraction module to dynamically fuse multiscale and multi-orientation brain sulci and gyri features. Considering the fact of the imbalanced dataset, the balanced MSE loss is used to mitigate the negative impact of imbalanced data distribution on gestational age prediction performance. RESULTS Evaluated on an imbalanced fetal brain MRI dataset of 1327 routine clinical T2-weighted MRI images from 157 subjects, PDFF-CNN achieved promising gestational age prediction performance with an overall mean absolute error of 0.848 weeks and anR 2 $R^2$ of 0.904. Furthermore, the attention activation maps of PDFF-CNN were derived, which revealed regional features that contributed to gestational age prediction at each gestational stage. CONCLUSIONS These results suggest that the proposed PDFF-CNN might have broad clinical applicability in guiding treatment interventions and delivery planning, which has the potential to be helpful with prenatal diagnosis.
Collapse
Affiliation(s)
- Ziteng Feng
- School of Computer Science, Hubei University of Technology, Wuhan, China
| | - Ran Zhou
- School of Computer Science, Hubei University of Technology, Wuhan, China
| | - Wei Xia
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siru Wang
- School of Computer Science, Hubei University of Technology, Wuhan, China
| | - Yang Liu
- School of Computer Science, Hubei University of Technology, Wuhan, China
| | - Zhongwei Huang
- School of Computer Science, Hubei University of Technology, Wuhan, China
| | - Haitao Gan
- School of Computer Science, Hubei University of Technology, Wuhan, China
| |
Collapse
|
2
|
Zargar FA, Khanday MA, Ashraf M, Bhat R. Impact of radiation therapy on healthy and cancerous cell dynamics: a Mathematical analysis. Comput Methods Biomech Biomed Engin 2024:1-11. [PMID: 38270349 DOI: 10.1080/10255842.2024.2308700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024]
Abstract
This study proposes a novel therapeutic model for cancer treatment with radiation therapy by analyzing the interactions among cancer, immune and healthy cells through a system of three ordinary differential equations. In this model, the natural influx rate of mature immune cells is assumed constant and is denoted by, a. The overall effect of radiation therapy on cancer cells is represented by a parameter, s; which is the surviving fraction of cells as determined by the Linear Quadratic (LQ) model. Conditions for the stability of equilibria in the interaction model modified to include the surviving fraction, are systematically established in terms of the dose and model parameters. Numerical simulations are performed in Wolfram MATHEMATICA software, investigating a spectrum of initial cell population values irradiated with 60Co γ -ray Low-LET radiation and High-LET 165 keV / μ m Ni-ion radiation to facilitate improved visualization and in-depth analysis. By analyzing the model, this study identifies threshold values for the absorbed dose D for particular values of the model and radiation parameters for both High Linear Energy Transfer (high-LET) and Low Linear Energy Transfer (low-LET) radiations that ensure either eradication or minimization of cancer cells from a patient's body, providing valuable insights for designing effective cancer treatments.
Collapse
Affiliation(s)
- F A Zargar
- Department of Mathematics, University of Kashmir, Srinagar, India
| | - M A Khanday
- Department of Mathematics, University of Kashmir, Srinagar, India
| | - Mudasir Ashraf
- Radiological Physics, Department of Radiodiagnosis, JNMC, Aligarh Muslim University, Aligarh, India
| | - R Bhat
- Department of Mathematics, School of Chemical Engineering and Physical Sciences, LPU, Phagwara, India
| |
Collapse
|
3
|
Sheng J, Lam S, Zhang J, Zhang Y, Cai J. Multi-omics fusion with soft labeling for enhanced prediction of distant metastasis in nasopharyngeal carcinoma patients after radiotherapy. Comput Biol Med 2024; 168:107684. [PMID: 38039891 DOI: 10.1016/j.compbiomed.2023.107684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/06/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023]
Abstract
Omics fusion has emerged as a crucial preprocessing approach in medical image processing, significantly assisting several studies. One of the challenges encountered in integrating omics data is the unpredictability arising from disparities in data sources and medical imaging equipment. Due to these differences, the distribution of omics futures exhibits spatial heterogeneity, diminishing their capacity to enhance subsequent tasks. To overcome this challenge and facilitate the integration of their joint application to specific medical objectives, this study aims to develop a fusion methodology for nasopharyngeal carcinoma (NPC) distant metastasis prediction to mitigate the disparities inherent in omics data. The multi-kernel late-fusion method can reduce the impact of these differences by mapping the features using the most suiTable single-kernel function and then combining them in a high-dimensional space that can effectively represent the data. The proposed approach in this study employs a distinctive framework incorporating a label-softening technique alongside a multi-kernel-based Radial basis function (RBF) neural network to address these limitations. An efficient representation of the data may be achieved by utilizing the multi-kernel to map the inherent features and then merging them in a space with many dimensions. However, the inflexibility of label fitting poses a constraint on using multi-kernel late-fusion methods in complex NPC datasets, hence affecting the efficacy of general classifiers in dealing with high-dimensional characteristics. The label softening increases the disparity between the two cohorts, providing a more flexible structure for allocating labels. The proposed model is evaluated on multi-omics datasets, and the results demonstrate its strength and effectiveness in predicting distant metastasis of NPC patients.
Collapse
Affiliation(s)
- Jiabao Sheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| | - SaiKit Lam
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| | - Jiang Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| | - Yuanpeng Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
4
|
Shi L, Sheng M, Wei Z, Liu L, Zhao J. CT-Based Radiomics Predicts the Malignancy of Pulmonary Nodules: A Systematic Review and Meta-Analysis. Acad Radiol 2023; 30:3064-3075. [PMID: 37385850 DOI: 10.1016/j.acra.2023.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 07/01/2023]
Abstract
RATIONALE AND OBJECTIVES More pulmonary nodules (PNs) have been detected with the wide application of computed tomography (CT) in lung cancer screening. Radiomics is a noninvasive approach to predict the malignancy of PNs. We aimed to systematically evaluate the methodological quality of the eligible studies regarding CT-based radiomics models in predicting the malignancy of PNs and evaluate the model performance of the available studies. MATERIALS AND METHODS PubMed, Embase, and Web of Science were searched to retrieve relevant studies. The methodological quality of the included studies was assessed using the Radiomics Quality Score (RQS) and Prediction model Risk of Bias Assessment Tool. A meta-analysis was conducted to evaluate the performance of CT-based radiomics model. Meta-regression and subgroup analyses were employed to investigate the source of heterogeneity. RESULTS In total, 49 studies were eligible for qualitative analysis and 27 studies were included in quantitative synthesis. The median RQS of 49 studies was 13 (range -2 to 20). The overall risk of bias was found to be high, and the overall applicability was of low concern in all included studies. The pooled sensitivity, specificity, and diagnostic odds ratio were 0.86 95% confidence interval (CI): 0.79-0.91, 0.84 95% CI: 0.78-0.88, and 31.55 95% CI: 21.31-46.70, respectively. The overall area under the curve was 0.91 95% CI: 0.89-0.94. Meta-regression showed the type of PNs on heterogeneity. CT-based radiomics models performed better in studies including only solid PNs. CONCLUSION CT-based radiomics models exhibited excellent diagnostic performance in predicting the malignancy of PNs. Prospective, large sample size, and well-devised studies are desired to verify the prediction capabilities of CT-based radiomics model.
Collapse
Affiliation(s)
- Lili Shi
- Medical School, Nantong University, Nantong, China (L.S., Z.W.)
| | - Meihong Sheng
- Department of Radiology, The Second Affiliated Hospital of Nantong University and Nantong First People's Hospital, Nantong, China (M.S.)
| | - Zhichao Wei
- Medical School, Nantong University, Nantong, China (L.S., Z.W.)
| | - Lei Liu
- Institutes of Intelligence Medicine, Fudan University, Shanghai, China (L.L.)
| | - Jinli Zhao
- Department of Radiology, Affiliated Hospital of Nantong University, Nantong, China (J.Z.).
| |
Collapse
|
5
|
Leung VWS, Ng CKC, Lam SK, Wong PT, Ng KY, Tam CH, Lee TC, Chow KC, Chow YK, Tam VCW, Lee SWY, Lim FMY, Wu JQ, Cai J. Computed Tomography-Based Radiomics for Long-Term Prognostication of High-Risk Localized Prostate Cancer Patients Received Whole Pelvic Radiotherapy. J Pers Med 2023; 13:1643. [PMID: 38138870 PMCID: PMC10744672 DOI: 10.3390/jpm13121643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Given the high death rate caused by high-risk prostate cancer (PCa) (>40%) and the reliability issues associated with traditional prognostic markers, the purpose of this study is to investigate planning computed tomography (pCT)-based radiomics for the long-term prognostication of high-risk localized PCa patients who received whole pelvic radiotherapy (WPRT). This is a retrospective study with methods based on best practice procedures for radiomics research. Sixty-four patients were selected and randomly assigned to training (n = 45) and testing (n = 19) cohorts for radiomics model development with five major steps: pCT image acquisition using a Philips Big Bore CT simulator; multiple manual segmentations of clinical target volume for the prostate (CTVprostate) on the pCT images; feature extraction from the CTVprostate using PyRadiomics; feature selection for overfitting avoidance; and model development with three-fold cross-validation. The radiomics model and signature performances were evaluated based on the area under the receiver operating characteristic curve (AUC) as well as accuracy, sensitivity and specificity. This study's results show that our pCT-based radiomics model was able to predict the six-year progression-free survival of the high-risk localized PCa patients who received the WPRT with highly consistent performances (mean AUC: 0.76 (training) and 0.71 (testing)). These are comparable to findings of other similar studies including those using magnetic resonance imaging (MRI)-based radiomics. The accuracy, sensitivity and specificity of our radiomics signature that consisted of two texture features were 0.778, 0.833 and 0.556 (training) and 0.842, 0.867 and 0.750 (testing), respectively. Since CT is more readily available than MRI and is the standard-of-care modality for PCa WPRT planning, pCT-based radiomics could be used as a routine non-invasive approach to the prognostic prediction of WPRT treatment outcomes in high-risk localized PCa.
Collapse
Affiliation(s)
- Vincent W. S. Leung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Curtise K. C. Ng
- Curtin Medical School, Curtin University, GPO Box U1987, Perth, WA 6845, Australia;
- Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Sai-Kit Lam
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| | - Po-Tsz Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Ka-Yan Ng
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Cheuk-Hong Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Tsz-Ching Lee
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Kin-Chun Chow
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Yan-Kate Chow
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Victor C. W. Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Shara W. Y. Lee
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Fiona M. Y. Lim
- Department of Oncology, Princess Margaret Hospital, Hong Kong SAR, China;
| | - Jackie Q. Wu
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27708, USA;
| | - Jing Cai
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| |
Collapse
|
6
|
Hu X, Sheng G, Shi P, Ding Y. TbsNet: the importance of thin-branch structures in CNNs. PeerJ Comput Sci 2023; 9:e1429. [PMID: 37346637 PMCID: PMC10280644 DOI: 10.7717/peerj-cs.1429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023]
Abstract
The performance of a convolutional neural network (CNN) model is influenced by several factors, such as depth, width, network structure, size of the receptive field, and feature map scaling. The optimization of the best combination of these factors poses as the main difficulty in designing a viable architecture. This article presents an analysis of key factors influencing network performance, offers several strategies for constructing an efficient convolutional network, and introduces a novel architecture named TbsNet (thin-branch structure network). In order to minimize computation costs and feature redundancy, lightweight operators such as asymmetric convolution, pointwise convolution, depthwise convolution, and group convolution are implemented to further reduce the network's weight. Unlike previous studies, the TbsNet architecture design rejects the reparameterization method and adopts a plain, simplified structure which eliminates extraneous branches. We conduct extensive experiments, including network depth, width, etc. TbsNet performs well on benchmark platforms, Top 1 Accuracy on CIFAR-10 is 97.02%, on CIFAR-100 is 83.56%, and on ImageNet-1K is 86.17%. Tbs-UNet's DSC on the Synapse dataset is 78.39%, higher than TransUNet's 0.91%. TbsNet can be competent for some downstream tasks in computer vision, such as medical image segmentation, and thus is competitive with prior state-of-the-art deep networks such as ResNet, ResNeXt, RepVgg, ParNet, ConvNeXt, and MobileNet.
Collapse
Affiliation(s)
- Xiujian Hu
- Department of Electronics and Information Engineering, Bozhou University, Bozhou, AnHui, China
| | - Guanglei Sheng
- School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, Shaanxi, China
| | - Piao Shi
- School of Artificial Intelligence, Hefei University of Technology, Hefei, Anhui, China
| | - Yuanyuan Ding
- Department of Electronics and Information Engineering, Bozhou University, Bozhou, AnHui, China
| |
Collapse
|
7
|
Zhang M, Gao H, Liao X, Ning B, Gu H, Yu B. DBGRU-SE: predicting drug-drug interactions based on double BiGRU and squeeze-and-excitation attention mechanism. Brief Bioinform 2023:7176312. [PMID: 37225428 DOI: 10.1093/bib/bbad184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/03/2023] [Accepted: 04/23/2023] [Indexed: 05/26/2023] Open
Abstract
The prediction of drug-drug interactions (DDIs) is essential for the development and repositioning of new drugs. Meanwhile, they play a vital role in the fields of biopharmaceuticals, disease diagnosis and pharmacological treatment. This article proposes a new method called DBGRU-SE for predicting DDIs. Firstly, FP3 fingerprints, MACCS fingerprints, Pubchem fingerprints and 1D and 2D molecular descriptors are used to extract the feature information of the drugs. Secondly, Group Lasso is used to remove redundant features. Then, SMOTE-ENN is applied to balance the data to obtain the best feature vectors. Finally, the best feature vectors are fed into the classifier combining BiGRU and squeeze-and-excitation (SE) attention mechanisms to predict DDIs. After applying five-fold cross-validation, The ACC values of DBGRU-SE model on the two datasets are 97.51 and 94.98%, and the AUC are 99.60 and 98.85%, respectively. The results showed that DBGRU-SE had good predictive performance for drug-drug interactions.
Collapse
Affiliation(s)
| | - Hongli Gao
- Qingdao University of Science and Technology, China
| | - Xin Liao
- Qingdao University of Science and Technology, China
| | - Baoxing Ning
- Qingdao University of Science and Technology, China
| | - Haiming Gu
- Qingdao University of Science and Technology, China
| | - Bin Yu
- Qingdao University of Science and Technology, China
| |
Collapse
|
8
|
Zhang YP, Zhang XY, Cheng YT, Li B, Teng XZ, Zhang J, Lam S, Zhou T, Ma ZR, Sheng JB, Tam VCW, Lee SWY, Ge H, Cai J. Artificial intelligence-driven radiomics study in cancer: the role of feature engineering and modeling. Mil Med Res 2023; 10:22. [PMID: 37189155 DOI: 10.1186/s40779-023-00458-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients' anatomy. However, the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians. Moreover, some potentially useful quantitative information in medical images, especially that which is not visible to the naked eye, is often ignored during clinical practice. In contrast, radiomics performs high-throughput feature extraction from medical images, which enables quantitative analysis of medical images and prediction of various clinical endpoints. Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis, demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine. However, radiomics remains in a developmental phase as numerous technical challenges have yet to be solved, especially in feature engineering and statistical modeling. In this review, we introduce the current utility of radiomics by summarizing research on its application in the diagnosis, prognosis, and prediction of treatment responses in patients with cancer. We focus on machine learning approaches, for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling. Furthermore, we introduce the stability, reproducibility, and interpretability of features, and the generalizability and interpretability of models. Finally, we offer possible solutions to current challenges in radiomics research.
Collapse
Affiliation(s)
- Yuan-Peng Zhang
- Department of Medical Informatics, Nantong University, Nantong, 226001, Jiangsu, China
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, Guangdong, China
| | - Xin-Yun Zhang
- Department of Medical Informatics, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yu-Ting Cheng
- Department of Medical Informatics, Nantong University, Nantong, 226001, Jiangsu, China
| | - Bing Li
- Department of Radiation Oncology, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, Henan, China
| | - Xin-Zhi Teng
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jiang Zhang
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Saikit Lam
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Ta Zhou
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Zong-Rui Ma
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jia-Bao Sheng
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Victor C W Tam
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Shara W Y Lee
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Hong Ge
- Department of Radiation Oncology, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, Henan, China
| | - Jing Cai
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China.
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
9
|
Dong Y, Zhang J, Lam S, Zhang X, Liu A, Teng X, Han X, Cao J, Li H, Lee FK, Yip CW, Au K, Zhang Y, Cai J. Multimodal Data Integration to Predict Severe Acute Oral Mucositis of Nasopharyngeal Carcinoma Patients Following Radiation Therapy. Cancers (Basel) 2023; 15:cancers15072032. [PMID: 37046693 PMCID: PMC10093711 DOI: 10.3390/cancers15072032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 04/14/2023] Open
Abstract
(1) Background: Acute oral mucositis is the most common side effect for nasopharyngeal carcinoma patients receiving radiotherapy. Improper or delayed intervention to severe AOM could degrade the quality of life or survival for NPC patients. An effective prediction method for severe AOM is needed for the individualized management of NPC patients in the era of personalized medicine. (2) Methods: A total of 242 biopsy-proven NPC patients were retrospectively recruited in this study. Radiomics features were extracted from contrast-enhanced CT (CECT), contrast-enhanced T1-weighted (cT1WI), and T2-weighted (T2WI) images in the primary tumor and tumor-related area. Dosiomics features were extracted from 2D or 3D dose-volume histograms (DVH). Multiple models were established with single and integrated data. The dataset was randomized into training and test sets at a ratio of 7:3 with 10-fold cross-validation. (3) Results: The best-performing model using Gaussian Naive Bayes (GNB) (mean validation AUC = 0.81 ± 0.10) was established with integrated radiomics and dosiomics data. The GNB radiomics and dosiomics models yielded mean validation AUC of 0.6 ± 0.20 and 0.69 ± 0.14, respectively. (4) Conclusions: Integrating radiomics and dosiomics data from the primary tumor area could generate the best-performing model for severe AOM prediction.
Collapse
Affiliation(s)
- Yanjing Dong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jiang Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Saikt Lam
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xinyu Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Anran Liu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xinzhi Teng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xinyang Han
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jin Cao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Hongxiang Li
- Department of Radiology, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou 350000, China
| | - Francis Karho Lee
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Celia Waiyi Yip
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Kwokhung Au
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Yuanpeng Zhang
- Department of Medical Informatics, Nantong University, Nantong 226000, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
| |
Collapse
|
10
|
Zhang J, Lam SK, Teng X, Ma Z, Han X, Zhang Y, Cheung ALY, Chau TC, Ng SCY, Lee FKH, Au KH, Yip CWY, Lee VHF, Han Y, Cai J. Radiomic feature repeatability and its impact on prognostic model generalizability: A multi-institutional study on nasopharyngeal carcinoma patients. Radiother Oncol 2023; 183:109578. [PMID: 36822357 DOI: 10.1016/j.radonc.2023.109578] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND AND PURPOSE To investigate the radiomic feature (RF) repeatability via perturbation and its impact on cross-institutional prognostic model generalizability in Nasopharyngeal Carcinoma (NPC) patients. MATERIALS AND METHODS 286 and 183 NPC patients from two institutions were included for model training and validation. Perturbations with random translations and rotations were applied to contrast-enhanced T1-weighted (CET1-w) MR images. RFs were extracted from primary tumor volume under a wide range of image filtering and discretization settings. RF repeatability was assessed by intraclass correlation coefficient (ICC), which was used to equally separate the RFs into low- and high-repeatable groups by the median value. After feature selection, multivariate Cox regression and Kaplan-Meier analysis were independently employed to develop and analyze prognostic models. Concordance index (C-index) and P-value from log-rank test were used to assess model performance. RESULTS Most textural RFs from high-pass wavelet-filtered images were susceptible to image perturbations. It was more prominent when a smaller discretization bin number was used (e.g., 8, mean ICC = 0.69). Using high-repeatable RFs for model development yielded a significantly higher C-index (0.63) in the validation cohort than when only low-repeatable RFs were used (0.57, P = 0.024), suggesting higher model generalizability. Besides, significant risk stratification in the validation cohort was observed only when high-repeatable RFs were used (P < 0.001). CONCLUSION Repeatability of RFs from high-pass wavelet-filtered CET1-w MR images of primary NPC tumor was poor, particularly when a smaller bin number was used. Exclusive use of high-repeatable RFs is suggested to safeguard model generalizability for wide-spreading clinical utilization.
Collapse
Affiliation(s)
- Jiang Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sai-Kit Lam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China; Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xinzhi Teng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zongrui Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xinyang Han
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yuanpeng Zhang
- Department of Medical Informatics, Nantong University, Nantong, Jiangsu, China
| | - Andy Lai-Yin Cheung
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Tin-Ching Chau
- Department of Clinical Oncology, Queen Mary Hospital, Hong Kong, China
| | - Sherry Chor-Yi Ng
- Department of Clinical Oncology, Queen Mary Hospital, Hong Kong, China
| | - Francis Kar-Ho Lee
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Kwok-Hung Au
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Celia Wai-Yi Yip
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Victor Ho-Fun Lee
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Ying Han
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
11
|
Association of Multi-Phasic MR-Based Radiomic and Dosimetric Features with Treatment Response in Unresectable Hepatocellular Carcinoma Patients following Novel Sequential TACE-SBRT-Immunotherapy. Cancers (Basel) 2023; 15:cancers15041105. [PMID: 36831445 PMCID: PMC9954441 DOI: 10.3390/cancers15041105] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
This study aims to investigate the association of pre-treatment multi-phasic MR-based radiomics and dosimetric features with treatment response to a novel sequential trans-arterial chemoembolization (TACE) plus stereotactic body radiotherapy (SBRT) plus immunotherapy regimen in unresectable Hepatocellular Carcinoma (HCC) sub-population. Twenty-six patients with unresectable HCC were retrospectively analyzed. Radiomic features were extracted from 42 lesions on arterial phase (AP) and portal-venous phase (PVP) MR images. Delta-phase (DeltaP) radiomic features were calculated as AP-to-PVP ratio. Dosimetric data of the tumor was extracted from dose-volume-histograms. A two-sided independent Mann-Whitney U test was used to assess the clinical association of each feature, and the classification performance of each significant independent feature was assessed using logistic regression. For the 3-month timepoint, four DeltaP-derived radiomics that characterize the temporal change in intratumoral randomness and uniformity were the only contributors to the treatment response association (p-value = 0.038-0.063, AUC = 0.690-0.766). For the 6-month timepoint, DeltaP-derived radiomic features (n = 4) maintained strong clinical associations with the treatment response (p-value = 0.047-0.070, AUC = 0.699-0.788), additional AP-derived radiomic features (n = 4) that reflect baseline tumoral arterial-enhanced signal pattern and tumor morphology (n = 1) that denotes initial tumor burden were shown to have strong associations with treatment response (p-value = 0.028-0.074, AUC = 0.719-0.773). This pilot study successfully demonstrated associations of pre-treatment multi-phasic MR-based radiomics with tumor response to the novel treatment regimen.
Collapse
|
12
|
Zhang Y, Hasikin K, Dhanalakshmi S, Hum YC, Lai KW. Editorial: Computational intelligence in personalized medicine. Front Pharmacol 2022; 13:1046271. [PMID: 36313315 PMCID: PMC9597616 DOI: 10.3389/fphar.2022.1046271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yuanpeng Zhang
- Department of Medical Informatics, Nantong University, Nantong, China
| | - Khairunnisa Hasikin
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Samiappan Dhanalakshmi
- Department of Electronics and Communication Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India
| | - Yan Chai Hum
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Khin Wee Lai
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
- *Correspondence: Khin Wee Lai,
| |
Collapse
|
13
|
Ran X, Shi J, Chen Y, Jiang K. Multimodal neuroimage data fusion based on multikernel learning in personalized medicine. Front Pharmacol 2022; 13:947657. [PMID: 36059988 PMCID: PMC9428611 DOI: 10.3389/fphar.2022.947657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroimaging has been widely used as a diagnostic technique for brain diseases. With the development of artificial intelligence, neuroimaging analysis using intelligent algorithms can capture more image feature patterns than artificial experience-based diagnosis. However, using only single neuroimaging techniques, e.g., magnetic resonance imaging, may omit some significant patterns that may have high relevance to the clinical target. Therefore, so far, combining different types of neuroimaging techniques that provide multimodal data for joint diagnosis has received extensive attention and research in the area of personalized medicine. In this study, based on the regularized label relaxation linear regression model, we propose a multikernel version for multimodal data fusion. The proposed method inherits the merits of the regularized label relaxation linear regression model and also has its own superiority. It can explore complementary patterns across different modal data and pay more attention to the modal data that have more significant patterns. In the experimental study, the proposed method is evaluated in the scenario of Alzheimer’s disease diagnosis. The promising performance indicates that the performance of multimodality fusion via multikernel learning is better than that of single modality. Moreover, the decreased square difference between training and testing performance indicates that overfitting is reduced and hence the generalization ability is improved.
Collapse
|
14
|
Lee W, Lam SK, Zhang Y, Yang R, Cai J. Review of methodological workflow, interpretation and limitations of nomogram application in cancer study. RADIATION MEDICINE AND PROTECTION 2022. [DOI: 10.1016/j.radmp.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
|
15
|
Gu F, Ma S, Wang X, Zhao J, Yu Y, Song X. Evaluation of Feature Selection for Alzheimer’s Disease Diagnosis. Front Aging Neurosci 2022; 14:924113. [PMID: 35813964 PMCID: PMC9263380 DOI: 10.3389/fnagi.2022.924113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Accurate recognition of patients with Alzheimer’s disease (AD) or mild cognitive impairment (MCI) is important for the subsequent treatment and rehabilitation. Recently, with the fast development of artificial intelligence (AI), AI-assisted diagnosis has been widely used. Feature selection as a key component is very important in AI-assisted diagnosis. So far, many feature selection methods have been developed. However, few studies consider the stability of a feature selection method. Therefore, in this study, we introduce a frequency-based criterion to evaluate the stability of feature selection and design a pipeline to select feature selection methods considering both stability and discriminability. There are two main contributions of this study: (1) It designs a bootstrap sampling-based workflow to simulate real-world scenario of feature selection. (2) It develops a decision graph to determine the optimal combination of supervised and unsupervised feature selection both considering feature stability and discriminability. Experimental results on the ADNI dataset have demonstrated the feasibility of our method.
Collapse
Affiliation(s)
- Feng Gu
- Department of Medical Image, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, China
- Department of Medical Image, The Second People’s Hospital of Nantong, Nantong, China
| | - Songhua Ma
- Department of Neurology, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, China
- Department of Neurology, The Second People’s Hospital of Nantong, Nantong, China
| | - Xiude Wang
- Department of Medical Image, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, China
- Department of Medical Image, The Second People’s Hospital of Nantong, Nantong, China
| | - Jian Zhao
- Nantong Center for Disease Control and Prevention, Nantong, China
| | - Ying Yu
- Nantong Center for Disease Control and Prevention, Nantong, China
| | - Xinjian Song
- Department of Rehabilitation Medicine, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, China
- Department of Rehabilitation Medicine, The Second People’s Hospital of Nantong, Nantong, China
- *Correspondence: Xinjian Song,
| |
Collapse
|
16
|
Regularized discriminative broad learning system for image classification. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.109306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|