1
|
Xu H, Zang C, Zhang F, Tian J, Li H, Tang S, Wang G. An innovative rheology analysis method applies to the formulation optimization of Panax notoginseng total saponins ocular gel. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-19. [PMID: 39331526 DOI: 10.1080/09205063.2024.2406632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024]
Abstract
Emphasizing the viscoelasticity of ophthalmic gels is crucial for understanding the residence time, structure, and stability of hydrogels. This study primarily aimed to propose an innovative rheology analysis method for ophthalmic gels, considering complex eye movements. This method was applied to select ophthalmic gels with favorable rheological characteristics. Additionally, the physical characteristics and in vitro release of the selected Panax notoginseng total saponins (PNS) gel were demonstrated. The selected PNS gel significantly increased the activities of SOD and decreased intracellular levels of MDA, TNF-α, and IL-1β in H2O2-treated ARPE-19 cells. Finally, the optimal formulation was selected as a suitable platform for ophthalmic delivery and was shown to significantly rescue ARPE-19 cells from oxidative cellular damage.
Collapse
Affiliation(s)
- Hong Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chen Zang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fangbo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jixiang Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hua Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shihuan Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guohua Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Almalki WH, Almujri SS. The impact of NF-κB on inflammatory and angiogenic processes in age-related macular degeneration. Exp Eye Res 2024; 248:110111. [PMID: 39326776 DOI: 10.1016/j.exer.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Age-related macular degeneration (AMD) is a prominent cause of vision loss, characterized by two different types, dry (atrophic) and wet (neovascular). Dry AMD is distinguished by the progressive deterioration of retinal cells, which ultimately causes a decline in vision. In contrast, wet AMD is defined by the abnormal development of blood vessels underneath the retina, leading to a sudden and severe vision impairment. The course of AMD is primarily driven by chronic inflammation and pathological angiogenesis, in which the NF-κB signaling pathway plays a crucial role. The activation of NF-κB results in the generation of pro-inflammatory cytokines, chemokines, and angiogenic factors like VEGF, which contribute to inflammation and the formation of new blood vessels in AMD. This review analyzes the intricate relationship between NF-κB signaling, inflammation, and angiogenesis in AMD and assesses the possibility of using NF-κB as a target for therapy. The evaluation involves a comprehensive examination of preclinical and clinical evidence that substantiates the effectiveness of NF-κB inhibitors in treating AMD by diminishing inflammation and pathological angiogenesis.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Aseer, Saudi Arabia
| |
Collapse
|
3
|
Zhao J, Han L, Zhang YR, Liu SM, Ji DR, Wang R, Yu YR, Jia MZ, Chai SB, Tang HF, Huang W, Qi YF. Intermedin Alleviates Diabetic Cardiomyopathy by Up-Regulating CPT-1β through Activation of the Phosphatidyl Inositol 3 Kinase/Protein Kinase B Signaling Pathway. Pharmaceuticals (Basel) 2024; 17:1204. [PMID: 39338366 PMCID: PMC11435185 DOI: 10.3390/ph17091204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/03/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Diabetic cardiomyopathy (DCM), one of the most serious long-term consequences of diabetes, is closely associated with myocardial fatty acid metabolism. Carnitine palmitoyltransferase-1β (CPT-1β) is the rate-limiting enzyme responsible for β-oxidation of long-chain fatty acids. Intermedin (IMD) is a pivotal bioactive small molecule peptide, participating in the protection of various cardiovascular diseases. However, the role and underlying mechanisms of IMD in DCM are still unclear. In this study, we investigated whether IMD alleviates DCM via regulating CPT-1β. A rat DCM model was established by having rats to drink fructose water for 12 weeks. A mouse DCM model was induced by feeding mice a high-fat diet for 16 weeks. We showed that IMD and its receptor complexes levels were significantly down-regulated in the cardiac tissues of DCM rats and mice. Reduced expression of IMD was also observed in neonatal rat cardiomyocytes treated with palmitic acid (PA, 300 μM) in vitro. Exogenous and endogenous IMD mitigated cardiac hypertrophy, fibrosis, dysfunction, and lipid accumulation in DCM rats and IMD-transgenic DCM mice, whereas knockout of IMD worsened these pathological processes in IMD-knockout DCM mice. In vitro, IMD alleviated PA-induced cardiomyocyte hypertrophy and cardiac fibroblast activation. We found that CPT-1β enzyme activity, mRNA and protein levels, and acetyl-CoA content were increased in T2DM patients, rats and mice. IMD up-regulated the CPT-1β levels and acetyl-CoA content in T2DM rats and mice. Knockdown of CPT-1β blocked the effects of IMD on increasing acetyl-CoA content and on inhibiting cardiomyocyte hypertrophy and cardiac fibroblast activation. IMD receptor antagonist IMD17-47 and the phosphatidyl inositol 3 kinase (PI3K)/protein kinase B (Akt) inhibitor LY294002 reversed the effects of IMD on up-regulating CPT-1β and acetyl-CoA expression and on inhibiting cardiomyocyte hypertrophy and cardiac fibroblast activation. We revealed that IMD alleviates DCM by up-regulating CPT-1β via calcitonin receptor-like receptor/receptor activity-modifying protein (CRLR/RAMP) receptor complexes and PI3K/Akt signaling. IMD may serve as a potent therapeutic target for the treatment of DCM.
Collapse
Affiliation(s)
- Jie Zhao
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Ling Han
- Department of Cardiology, Fuxing Hospital, Capital Medical University, Beijing 100038, China
| | - Ya-Rong Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Shi-Meng Liu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Deng-Ren Ji
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Rui Wang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Yan-Rong Yu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Mo-Zhi Jia
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - San-Bao Chai
- Department of Endocrinology and Metabolism, Peking University International Hospital, Beijing 102206, China
| | - Hui-Fang Tang
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Wei Huang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| |
Collapse
|
4
|
You W, Azuma K, Iwagawa T, Watanabe S, Aihara M, Shiraya T, Ueta T. The role of lipid peroxidation in epithelial-mesenchymal transition of retinal pigment epithelial cells. Sci Rep 2024; 14:16498. [PMID: 39020017 PMCID: PMC11255318 DOI: 10.1038/s41598-024-67587-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024] Open
Abstract
Epithelial-Mesenchymal Transition (EMT) of retinal pigment epithelial (RPE) cells is recognized as pivotal in various retinal diseases. Previous studies have suggested a reciprocal regulation between reactive oxygen species (ROS) and EMT, though the involvement of peroxidized lipids or the effects of reducing them has remained unclear. The present study disclosed that EMT of ARPE-19 cells induced by TGF-β2 and TNF-α involves increased lipid peroxidation, and Ferrostatin-1 (Fer-1), a lipophilic antioxidative agent, successfully inhibited the increase in lipid peroxidation. Fer-1 suppressed the formation of EMT-associated fibrotic deposits, while EMT induction or Fer-1 treatment did not influence the cell viability or proliferation. Functionally, Fer-1 impeded EMT-driven cell migration and reduction in transepithelial electrical resistance. It demonstrated regulatory prowess by downregulating the mesenchymal marker fibronectin, upregulating the epithelial marker ZO-1, and inhibiting the EMT-associated transcriptional factor ZEB1. Additionally, VEGF, a major pathogenic cytokine in various retinal diseases, is also upregulated during EMT, and Fer-1 significantly mitigated the effect. The present study disclosed the involvement of lipid peroxidation in EMT of RPE cells, and suggests the suppression of lipid peroxidation may be a potential therapeutic target in retinal diseases in which EMT is implicated.
Collapse
Affiliation(s)
- Wang You
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan
| | - Kunihiro Azuma
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan
| | - Toshiro Iwagawa
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan
- Department of Retinal Biology and Pathology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan
| | - Sumiko Watanabe
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan
- Department of Retinal Biology and Pathology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan
| | - Makoto Aihara
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan
| | - Tomoyasu Shiraya
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan
| | - Takashi Ueta
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan.
| |
Collapse
|
5
|
Liu D, Yan B, Yin Y, Chen F, Guo C, Li Q, Liu J, Pu L, Wu W, Luo J. PI3Kδ Mediates Fibrosis by Patient-Derived Vitreous. J Transl Med 2024; 104:102026. [PMID: 38307209 DOI: 10.1016/j.labinv.2024.102026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/23/2023] [Accepted: 01/24/2024] [Indexed: 02/04/2024] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a fundamental process in developing fibrotic diseases, including forming epiretinal membranes (ERMs). ERMs can result in irreversible vision loss. Previous research has demonstrated that vitreous (VIT) derived from patients with proliferative diabetic retinopathy can stimulate angiogenesis through the Axl/PI3K/Akt pathway. Building upon this knowledge, we aimed to explore the influence of VIT from patients with macular membranes in ARPE-19 cells. Our findings reveal that patient-derived VIT from individuals with macular membranes promotes EMT and phosphoinositide 3-kinase-delta (PI3Kδ) expression in ARPE-19 cells. To elucidate the function of PI3Kδ in the ERM, we conducted experiments involving the knockout of p110δ, a key subunit of PI3Kδ, and observed that its absence hinders EMT induced by patient-derived VIT. Moreover, p110δ depletion reduces cell proliferation and migration in ARPE-19 cells. Remarkably, these effects were further corroborated by applying the p110δ inhibitor idelalisib, which blocks fibrosis in the laser-induced fibrosis model. Collectively, our results propose that p110δ plays a critical role in the progression of ERMs. Consequently, targeting p110δ emerges as a promising therapeutic approach for mitigating fibrosis. These findings contribute to a better understanding of the underlying mechanisms involved in ERM formation and highlight the potential for p110δ-directed antifibrotic therapy in retinal diseases.
Collapse
Affiliation(s)
- Dan Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Ophthalmology, Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bin Yan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiwei Yin
- Department of Ophthalmology, Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Cao Guo
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Liu
- School of Medicine, Hunan University of Medicine, Huaihua, Hunan, China
| | - Li Pu
- Department of Ophthalmology, Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenyi Wu
- Department of Ophthalmology, Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Jing Luo
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|