1
|
Morishita H, Perera LMB, Sunakawa H, Kimura S, Yoshida H, Ogihara T. P-Glycoprotein-Mediated Interaction Is a Risk Factor for QT Prolongation in Concomitant Use of Antipsychotics and SSRIs as P-Glycoprotein-Mediated Inhibitors: Analysis of the Japanese Adverse Drug Event Report Database. J Clin Pharmacol 2024; 64:118-124. [PMID: 37658631 DOI: 10.1002/jcph.2343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
The inhibition of human ether-a-go-go-related gene (hERG) channels is a known cause of QT prolongation triggered by antipsychotic drugs. Our previous studies suggest that P-glycoprotein (P-gp)-mediated drug interactions may lead to increased gastrointestinal absorption of pimozide and its accumulation in cardiomyocytes, thereby enhancing the inhibitory effect of hERG channels. There is a paucity of epidemiological studies examining the risk of QT prolongation by antipsychotic drugs in terms of P-gp-mediated interactions with concomitant drugs. Therefore, using the Japanese Adverse Event Reporting Database, we investigated whether the risk of QT prolongation triggered by antipsychotic drugs associated with hERG inhibition is affected by the concomitant use of selective serotonin reuptake inhibitors (SSRIs) associated with P-gp inhibition. The results showed that the frequency of QT prolongation increased when the antipsychotic drugs quetiapine and sulpiride, which are P-gp substrates, were combined with SSRIs with P-gp inhibition. In contrast, no association with QT prolongation was observed in patients on non-P-gp-substrate antipsychotics, irrespective of the P-gp inhibitory effect of the concomitant SSRI. These results suggest that P-gp-mediated interactions are a risk factor for antipsychotic-induced QT prolongation. There is a need for further investigation into the risks of specific drug combinations.
Collapse
Affiliation(s)
- Hiroki Morishita
- Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
- Department of Pharmacy, Saiseikai Maebashi Hospital, Maebashi, Gunma, Japan
| | | | - Hiroki Sunakawa
- Laboratory of Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
| | - Satsuki Kimura
- Laboratory of Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
| | - Hitoshi Yoshida
- Department of Pharmacy, Saiseikai Maebashi Hospital, Maebashi, Gunma, Japan
| | - Takuo Ogihara
- Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
- Laboratory of Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
| |
Collapse
|
2
|
Morishita H, Perera LMB, Zhang X, Mizoi K, Ito MA, Yano K, Ogihara T. P-Glycoprotein-Mediated Pharmacokinetic Interactions Increase Pimozide hERG Channel Inhibition. J Pharm Sci 2022; 111:3411-3416. [PMID: 36181876 DOI: 10.1016/j.xphs.2022.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 01/05/2023]
Abstract
Pimozide, an antipsychotic drug, is a potent inhibitor of the hERG channel. A case of death due to cardiac arrest has been reported in a boy who received pimozide together with sertraline and aripiprazole. In this study, we focused on drug-drug interactions and investigated the relationships between transporter-mediated intracellular accumulation and the hERG inhibitory effect of pimozide. The accumulation of pimozide in cardiomyocyte-derived AC16 cells was significantly increased by sertraline and aripiprazole, which are thought to have a P-glycoprotein (P-gp) inhibitory effect, and under P-gp siRNA conditions. These results suggest P-gp inhibition increases pimozide accumulation in AC16 cells. We introduced the hERG plasmid into AC16 cells and investigated the concentration-dependent hERG inhibitory effect of pimozide from within AC16 cells. Addition of 10 nM or more pimozide significantly inhibited the hERG current with concentration dependence. These results indicate P-gp-mediated pharmacokinetic interaction increases pimozide accumulation in AC16 cells, and the subsequent elevated pimozide levels within the cells may result in an increased risk of hERG channel inhibition. Our present study calls attention to the risks associated with the combined use of cardiotoxic P-gp substrate(s) and P-gp inhibitory medicines.
Collapse
Affiliation(s)
- Hiroki Morishita
- Department of Pharmacy, Saiseikai Maebashi Hospital, 564-1 Kamishinden-machi, Maebashi-shi, Gunma 371-0821, Japan; Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan.
| | - Liyanage Manosika Buddhini Perera
- Laboratory of Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan
| | - Xieyi Zhang
- Laboratory of Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan
| | - Kenta Mizoi
- Laboratory of Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan
| | - Masa-Aki Ito
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan
| | - Kentaro Yano
- Laboratory of Drug Metabolism and Pharmacokinetics, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, Kanagawa 245-0066, Japan
| | - Takuo Ogihara
- Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan; Laboratory of Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan
| |
Collapse
|
3
|
Morishita H, Okawa K, Ishii M, Mizoi K, Ito MA, Arakawa H, Yano K, Ogihara T. Gastrointestinal absorption of pimozide is enhanced by inhibition of P-glycoprotein. PLoS One 2020; 15:e0232438. [PMID: 33119612 PMCID: PMC7595425 DOI: 10.1371/journal.pone.0232438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/05/2020] [Indexed: 01/16/2023] Open
Abstract
Drug-drug interaction was suggested to have played a role in the recent death due to cardiac arrest of a patient taking pimozide, sertraline and aripiprazole antipsychotic/antidepressant combination therapy. Here, we investigated the possible involvement of P-glycoprotein (P-gp)-mediated interaction among these drugs, using in vitro methods. ATPase assay confirmed that pimozide is a P-gp substrate, and might act as a P-gp inhibitor at higher concentrations. The maximum transport rate (Jmax) and half-saturation concentration (Kt) for the carrier-mediated transport estimated by means of pimozide efflux assay using P-gp-overexpressing LLC-GA5-CoL150 cells were 84.9 ± 8.9 pmol/min/mg protein, and 10.6 ± 4.7 μM, respectively. These results indicate that pimozide is a good P-gp substrate, and it appears to have the potential to cause drug-drug interactions in the digestive tract at clinically relevant gastrointestinal concentrations. Moreover, sertraline or aripiprazole significantly decreased the efflux ratio of pimozide in LLC-GA5-CoL150 cells. Transport studies using Caco-2 cell monolayers were consistent with the results in LLC-GA5-CoL150 cells, and indicate that P-gp-mediated drug-drug interaction may occur in the gastrointestinal tract. Thus, P-gp inhibition by sertraline and/or aripiprazole may increase the gastrointestinal permeability of co-administered pimozide, resulting in an increased blood concentration of pimozide, which is known to be associated with an increased risk of QT prolongation, a life-threatening side effect.
Collapse
Affiliation(s)
- Hiroki Morishita
- Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, Nakaorui-machi, Takasaki, Gunma, Japan
- Department of Pharmacy, Saiseikai Maebashi Hospital, Kamishinden-machi, Maebashi, Gunma, Japan
| | - Kozue Okawa
- Laboratory of Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, Nakaorui-machi, Takasaki, Gunma, Japan
| | - Misaki Ishii
- Laboratory of Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, Nakaorui-machi, Takasaki, Gunma, Japan
| | - Kenta Mizoi
- Laboratory of Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, Nakaorui-machi, Takasaki, Gunma, Japan
| | - Masa-aki Ito
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Nakaorui-machi, Takasaki, Gunma, Japan
| | - Hiroshi Arakawa
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Kentaro Yano
- Laboratory of Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, Nakaorui-machi, Takasaki, Gunma, Japan
| | - Takuo Ogihara
- Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, Nakaorui-machi, Takasaki, Gunma, Japan
- Laboratory of Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, Nakaorui-machi, Takasaki, Gunma, Japan
- * E-mail:
| |
Collapse
|
4
|
Wang H. Anti-NMDA Receptor Encephalitis and Vaccination. Int J Mol Sci 2017; 18:ijms18010193. [PMID: 28106787 PMCID: PMC5297824 DOI: 10.3390/ijms18010193] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 12/12/2022] Open
Abstract
Anti-N-methyl-d-aspartate (Anti-NMDA) receptor encephalitis is an acute autoimmune neurological disorder. The cause of this disease is often unknown, and previous studies revealed that it might be caused by a virus, vaccine or tumor. It occurs more often in females than in males. Several cases were reported to be related to vaccination such as the H1N1 vaccine and tetanus/diphtheria/pertussis and polio vaccines. In this study, we reported an anti-NMDA receptor encephalitis case that may be caused by Japanese encephalitis vaccination. To investigate the association between anti-NMDA receptor encephalitis and vaccination, we analyzed the phylogenetic relationship of the microRNAs, which significantly regulate these vaccine viruses or bacteria, and the phylogenetic relationship of these viruses and bacteria. This reveals that anti-NMDA receptor encephalitis may be caused by Japanese encephalitis vaccination, as well as H1N1 vaccination or tetanus/diphtheria/pertussis and polio vaccinations, from the phylogenetic viewpoint.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Chiao Tung University, Hsinchu 30010, Taiwan.
| |
Collapse
|