1
|
Wen D, Xing H, Tang X, Wang Y, Jiang B, Li J, Liu Y, Zha L. Application of a new composite genetic marker semen-specific methylation-microhaplotype in the analysis of semen-vaginal fluid mixtures. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241565. [PMID: 39816748 PMCID: PMC11732431 DOI: 10.1098/rsos.241565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 09/10/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025]
Abstract
DNA mixtures containing semen and vaginal fluid are common biological samples in forensic analysis. However, the analysis of semen-vaginal fluid mixtures remains challenging. In this study, to solve these problems, it is proposed to combine semen-specific CpG sites and closely related microhaplotype sites to form a new composite genetic marker (semen-specific methylation-microhaplotype). Six methylation-microhaplotype loci were selected. To further improve discrimination power, five methylation-SNP loci were also included. The methylation levels and genotypes of these selected loci were obtained using massively parallel sequencing technology. Except for loci MMH04ZHA019 and MMH17ZHA059, the remaining nine loci were successfully sequenced. For the successfully sequenced loci, they performed well in identifying individuals and body fluids. An allele categorization model was developed using K-nearest neighbour algorithm, which was then used to predict allele types in semen-vaginal fluid mixtures. These loci were able to confirm the presence of semen and link semen to a true donor in semen-vaginal fluid mixtures with mixing ratios of 10:1, 9:1, 5:1, 4:1, 1:1, 1:3, 1:4, 1:8 and 1:9 (semen:vaginal fluid). This preliminary study suggests that this new composite genetic marker has great potential as a supplementary tool to commonly used genetic markers (STR, etc.) for analysing semen-vaginal fluid mixtures.
Collapse
Affiliation(s)
- Dan Wen
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan410013, People’s Republic of China
| | - Hao Xing
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan410013, People’s Republic of China
| | - Xuan Tang
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan410013, People’s Republic of China
| | - Yue Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan410013, People’s Republic of China
| | - Bowei Jiang
- The First Research Institute of the Ministry of Public Security of P.R.C, No.1. Shouti South Road, Haidian District, Beijing100044, People’s Republic of China
| | - Jienan Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan410013, People’s Republic of China
| | - Ying Liu
- Department of Oral Implantology, Xiangya Hospital of Stomatology, Central South University, No72. Xiangya Road, Changsha, Hunan410028, People’s Republic of China
| | - Lagabaiyila Zha
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan410013, People’s Republic of China
| |
Collapse
|
2
|
Wang HX, Liu XZ, He XM, Xiao C, Huang DX, Yi SH. Identification of Mixtures of Two Types of Body Fluids Using the Multiplex Methylation System and Random Forest Models. Curr Med Sci 2023; 43:908-918. [PMID: 37700190 DOI: 10.1007/s11596-023-2770-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2023] [Accepted: 06/08/2023] [Indexed: 09/14/2023]
Abstract
OBJECTIVE Body fluid mixtures are complex biological samples that frequently occur in crime scenes, and can provide important clues for criminal case analysis. DNA methylation assay has been applied in the identification of human body fluids, and has exhibited excellent performance in predicting single-source body fluids. The present study aims to develop a methylation SNaPshot multiplex system for body fluid identification, and accurately predict the mixture samples. In addition, the value of DNA methylation in the prediction of body fluid mixtures was further explored. METHODS In the present study, 420 samples of body fluid mixtures and 250 samples of single body fluids were tested using an optimized multiplex methylation system. Each kind of body fluid sample presented the specific methylation profiles of the 10 markers. RESULTS Significant differences in methylation levels were observed between the mixtures and single body fluids. For all kinds of mixtures, the Spearman's correlation analysis revealed a significantly strong correlation between the methylation levels and component proportions (1:20, 1:10, 1:5, 1:1, 5:1, 10:1 and 20:1). Two random forest classification models were trained for the prediction of mixture types and the prediction of the mixture proportion of 2 components, based on the methylation levels of 10 markers. For the mixture prediction, Model-1 presented outstanding prediction accuracy, which reached up to 99.3% in 427 training samples, and had a remarkable accuracy of 100% in 243 independent test samples. For the mixture proportion prediction, Model-2 demonstrated an excellent accuracy of 98.8% in 252 training samples, and 98.2% in 168 independent test samples. The total prediction accuracy reached 99.3% for body fluid mixtures and 98.6% for the mixture proportions. CONCLUSION These results indicate the excellent capability and powerful value of the multiplex methylation system in the identification of forensic body fluid mixtures.
Collapse
Affiliation(s)
- Han-Xiao Wang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Zhao Liu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xi-Miao He
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chao Xiao
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dai-Xin Huang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shao-Hua Yi
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Watanabe K, Yamagishi T, Toyomane K, Akutsu T. Validation of a novel fluorescent probe-based real-time PCR assay to detect saliva-specific unmethylated CpG sites for saliva identification. Leg Med (Tokyo) 2023; 63:102260. [PMID: 37094513 DOI: 10.1016/j.legalmed.2023.102260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/08/2023] [Revised: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
The identification of saliva from forensic samples is often important to establish what happened at a crime scene, especially in sexual assault cases. Recently, CpG sites that are specifically methylated or unmethylated in saliva have been reported as markers for saliva identification. In this study, we designed a fluorescent probe-based real-time polymerase chain reaction (PCR) assay for analyzing the methylation status of two neighboring CpG sites, which we previously found were saliva-specifically unmethylated. Specificity analysis using various types of body fluid/tissue samples demonstrated a probe detecting the unmethylation of the two CpG sites reacted only to saliva DNA, indicating this probe as an all-or-nothing marker for the presence of saliva DNA. Sensitivity analysis demonstrated that the detection limit was 0.5 ng saliva DNA as input for bisulfite conversion, while we confirmed a negative effect of larger amounts of non-saliva DNA on sensitivity in the analysis of saliva-vaginal DNA mixtures. We finally validated the applicability of this test to swabs from licked skin and bottles after drinking as mock forensic samples in comparison with other saliva-specific markers. We confirmed the potential usefulness of this test for skin samples, from which a saliva-specific mRNA was not detected reliably, while the ingredients in several beverages might affect methylation analysis. Given the simplicity of real-time PCR as well as the high specificity and sensitivity of the test, we believe the developed method is suitable for routine forensic analysis and can play an important role in saliva identification.
Collapse
Affiliation(s)
- Ken Watanabe
- National Research Institute of Police Science, Chiba 277-0882, Japan.
| | | | - Kochi Toyomane
- National Research Institute of Police Science, Chiba 277-0882, Japan
| | - Tomoko Akutsu
- National Research Institute of Police Science, Chiba 277-0882, Japan
| |
Collapse
|
4
|
Abstract
This review paper covers the forensic-relevant literature in biological sciences from 2019 to 2022 as a part of the 20th INTERPOL International Forensic Science Managers Symposium. Topics reviewed include rapid DNA testing, using law enforcement DNA databases plus investigative genetic genealogy DNA databases along with privacy/ethical issues, forensic biology and body fluid identification, DNA extraction and typing methods, mixture interpretation involving probabilistic genotyping software (PGS), DNA transfer and activity-level evaluations, next-generation sequencing (NGS), DNA phenotyping, lineage markers (Y-chromosome, mitochondrial DNA, X-chromosome), new markers and approaches (microhaplotypes, proteomics, and microbial DNA), kinship analysis and human identification with disaster victim identification (DVI), and non-human DNA testing including wildlife forensics. Available books and review articles are summarized as well as 70 guidance documents to assist in quality control that were published in the past three years by various groups within the United States and around the world.
Collapse
Affiliation(s)
- John M. Butler
- National Institute of Standards and Technology, Special Programs Office, 100 Bureau Drive, Mail Stop 4701, Gaithersburg, MD, USA
| |
Collapse
|
5
|
Sijen T, Harbison S. On the Identification of Body Fluids and Tissues: A Crucial Link in the Investigation and Solution of Crime. Genes (Basel) 2021; 12:1728. [PMID: 34828334 PMCID: PMC8617621 DOI: 10.3390/genes12111728] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Body fluid and body tissue identification are important in forensic science as they can provide key evidence in a criminal investigation and may assist the court in reaching conclusions. Establishing a link between identifying the fluid or tissue and the DNA profile adds further weight to this evidence. Many forensic laboratories retain techniques for the identification of biological fluids that have been widely used for some time. More recently, many different biomarkers and technologies have been proposed for identification of body fluids and tissues of forensic relevance some of which are now used in forensic casework. Here, we summarize the role of body fluid/ tissue identification in the evaluation of forensic evidence, describe how such evidence is detected at the crime scene and in the laboratory, elaborate different technologies available to do this, and reflect real life experiences. We explain how, by including this information, crucial links can be made to aid in the investigation and solution of crime.
Collapse
Affiliation(s)
- Titia Sijen
- Division Human Biological Traces, Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB The Hague, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - SallyAnn Harbison
- Institute of Environmental Science and Research Limited, Private Bag 92021, Auckland 1142, New Zealand;
- Department of Statistics, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|