1
|
Hameed KM, Bollino DR, Shetty AC, Carter-Cooper B, Lapidus RG, Emadi A. Dual targeting of glutamine and serine metabolism in acute myeloid leukemia. Front Oncol 2024; 14:1326754. [PMID: 38690164 PMCID: PMC11059989 DOI: 10.3389/fonc.2024.1326754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/20/2024] [Indexed: 05/02/2024] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy characterized by disrupted blood cell production and function. Recent investigations have highlighted the potential of targeting glutamine metabolism as a promising therapeutic approach for AML. Asparaginases, enzymes that deplete circulating glutamine and asparagine, are approved for the treatment of acute lymphoblastic leukemia, but are also under investigation in AML, with promising results. We previously reported an elevation in plasma serine levels following treatment with Erwinia-derived asparaginase (also called crisantaspase). This led us to hypothesize that AML cells initiate the de novo serine biosynthesis pathway in response to crisantaspase treatment and that inhibiting this pathway in combination with crisantaspase would enhance AML cell death. Here we report that in AML cell lines, treatment with the clinically available crisantaspase, Rylaze, upregulates the serine biosynthesis enzymes phosphoglycerate dehydrogenase (PHGDH) and phosphoserine aminotransferase (PSAT1) through activation of the Amino Acid Response (AAR) pathway, a cellular stress response mechanism that regulates amino acid metabolism and protein synthesis under conditions of nutrient limitation. Inhibition of serine biosynthesis through CRISPR-Cas9-mediated knockout of PHGDH resulted in a ~250-fold reduction in the half-maximal inhibitory concentration (IC50) for Rylaze, indicating heightened sensitivity to crisantaspase therapy. Treatment of AML cells with a combination of Rylaze and a small molecule inhibitor of PHGDH (BI4916) revealed synergistic anti-proliferative effects in both cell lines and primary AML patient samples. Rylaze-BI4916 treatment in AML cell lines led to the inhibition of cap-dependent mRNA translation and protein synthesis, as well as a marked decrease in intracellular glutathione levels, a critical cellular antioxidant. Collectively, our results highlight the clinical potential of targeting serine biosynthesis in combination with crisantaspase as a novel therapeutic strategy for AML.
Collapse
Affiliation(s)
- Kanwal M. Hameed
- School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Dominique R. Bollino
- School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Amol C. Shetty
- Institute of Genome Sciences, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Brandon Carter-Cooper
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Rena G. Lapidus
- School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Ashkan Emadi
- School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
- Institute of Genome Sciences, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|
2
|
Brenner AK, Bruserud Ø. S100 Proteins in Acute Myeloid Leukemia. Neoplasia 2018; 20:1175-1186. [PMID: 30366122 PMCID: PMC6215056 DOI: 10.1016/j.neo.2018.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 01/02/2023] Open
Abstract
The S100 protein family contains 20 functionally expressed members, which are commonly dysregulated in cancer. Their wide range of functions includes cell proliferation, cell differentiation, regulation of transcription factors, inflammation, chemotaxis, and angiogenesis. S100 proteins have in several types of cancer proven to be biomarkers for disease progression and prognosis. Acute myeloid leukemia (AML) is a highly heterogeneous and aggressive disease in which immature myeloblasts replace normal hematopoietic cells in the bone marrow. This review focuses on the S100 protein family members, which commonly are dysregulated in AML, and on the consequences of their dysregulation in the disorder. Like in other cancers, it appears as if S100 proteins are potential biomarkers for leukemogenesis. Furthermore, several S100 members seem to be involved in maintaining the leukemic phenotype. For these reasons, specific S100 proteins might serve as prognostic biomarkers, especially in the patient subset with intermediate/undetermined risk, and as potential targets for patient-adjusted therapy. Because the question of the most suitable candidate S100 biomarkers in AML still is under discussion, because particular AML subgroups lead to specific S100 signatures, and because downstream effects and the significance of co-expression of potential S100 binding partners in AML are not fully elucidated yet, we conclude that a panel of S100 proteins will probably be best suited for prognostic purposes.
Collapse
Affiliation(s)
- Annette K Brenner
- Department of Medicine, Haukeland University Hospital, P.O. Box 1400, 5021 Bergen, Norway; Section for Hematology, Department of Clinical Science, University of Bergen, P.O. Box 7804, 5020 Bergen, Norway
| | - Øystein Bruserud
- Department of Medicine, Haukeland University Hospital, P.O. Box 1400, 5021 Bergen, Norway; Section for Hematology, Department of Clinical Science, University of Bergen, P.O. Box 7804, 5020 Bergen, Norway.
| |
Collapse
|
3
|
Low Expression of S100P Is Associated With Poor Prognosis in Patients With Clear Cell Adenocarcinoma of the Ovary. Int J Gynecol Cancer 2016; 25:1582-6. [PMID: 26397155 DOI: 10.1097/igc.0000000000000544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE The S100P protein stimulates cell proliferation and survival, thereby contributing to cancer progression. The purposes of this study were to evaluate S100P expression in ovarian clear cell adenocarcinoma and to determine whether S100P expression was correlated with the clinicopathological features or prognoses of patients with clear cell adenocarcinoma. METHODS We examined S100P expression in 30 ovarian clear cell adenocarcinoma specimens using immunohistochemistry analysis. The Kaplan-Meier method was used for analysis of overall survival, and comparisons were made based on the log-rank test. RESULTS Negative staining for nuclear S100P was associated with a poor prognosis as compared with that of positive staining for nuclear S100P in specimens from patients with clear cell adenocarcinoma. CONCLUSIONS These data suggested that S100P may serve as an independent prognostic factor and marker for acquired resistance to chemotherapeutic drugs in clear cell adenocarcinoma.
Collapse
|
4
|
Tothova V, Isola J, Parkkila S, Kopacek J, Pastorek J, Pastorekova S, Gibadulinova A. Glucocorticoid receptor-mediated transcriptional activation of S100P gene coding for cancer-related calcium-binding protein. J Cell Biochem 2012; 112:3373-84. [PMID: 21751241 DOI: 10.1002/jcb.23268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
S100P is a member of the S100 family of calcium-binding proteins involved in calcium sensing and signal transduction. Its abnormal expression and biological activities are linked to tumor phenotype, namely to increased survival, proliferation, invasion and metastatic propensity of tumor cells. Association of S100P with outcome of tumor treatment and preliminary data from S100P promoter analysis prompted us to study regulation of S100P expression by glucocorticoids, which are implicated in tumor response to chemotherapy. We showed that dexamethasone (DX), a representative glucocorticoid, was capable to induce activity of S100P promoter by means of increased expression, nuclear translocation, and transactivation properties of the glucocorticoid receptor (GR). Moreover, DX treatment led to decreased phosphorylation of ERK1/2, reduced transcriptional activity of AP1, and modulated activity of some additional transcription factors. We identified a promoter region responsible for DX-mediated transactivation and proved GR binding to S100P promoter. We found that the effect of DX was enhanced by partial but not complete inhibition of the MAPK/ERK pathway, supporting an active crosstalk between GR and MAPK/ERK signal transduction in control of S100P expression. On the other hand, suppression of GR mRNA level by transient siRNA expression resulted in reduced S100P transcription. The role of GR activation in S100P regulation was supported by co-expression of GR with S100P in cells treated with DX. These data suggest that S100P is a direct transcriptional target of glucocorticoid-mediated signaling in tumor cells that is activated through the interplay of GR and MAPK pathways.
Collapse
Affiliation(s)
- Veronika Tothova
- Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovak Republic
| | | | | | | | | | | | | |
Collapse
|
5
|
Jiang H, Hu H, Tong X, Jiang Q, Zhu H, Zhang S. Calcium-binding protein S100P and cancer: mechanisms and clinical relevance. J Cancer Res Clin Oncol 2011; 138:1-9. [DOI: 10.1007/s00432-011-1062-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 09/01/2011] [Indexed: 10/17/2022]
|
6
|
Shiota M, Tsunoda T, Song Y, Yokomizo A, Tada Y, Oda Y, Naito S. Enhanced S100 calcium-binding protein P expression sensitizes human bladder cancer cells to cisplatin. BJU Int 2010; 107:1148-53. [PMID: 20726978 DOI: 10.1111/j.1464-410x.2010.09535.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE • To investigate the role of S100 calcium-binding protein P (S100P) in the gain of cis-diamminedichloroplatinum (II) (cisplatin) resistance in bladder cancer, having previously found, with cDNA microarrays using two pairs of parental (T24, KK47) and their cisplatin-resistant bladder cancer cell lines (T24/DDP10, KK47/DDP20), that S100P mRNA expression was significantly reduced in cisplatin-resistant cells. MATERIALS AND METHODS • S100P mRNA and protein expression levels were investigated by northern and western blot analyses, respectively. • Intracellular S100P localization was examined by immunocytochemistry and immunohistochemistry. • S100P over-expression, obtained by transfection with S100P expression plasmid, was used to investigate whether or not S100P affected cellular resistance to cisplatin. RESULTS • S100P mRNA showed increased expression by cisplatin stimulation in parental cell lines. • On the other hand, S100P mRNA and protein expression levels were markedly reduced in cisplatin-resistant cells. • The over-expression of S100P in resistant cells resulted in an increased sensitivity to cisplatin. CONCLUSIONS • In bladder cancer cells, S100P was expressed and localized mainly in the nucleus. • S100P expression was also involved in cisplatin sensitivity. • S100P might thus represent a molecular marker predicting cisplatin sensitivity and a molecular therapeutic target for cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Transcriptional regulation and functional implication of S100P in cancer. Amino Acids 2010; 41:885-92. [DOI: 10.1007/s00726-010-0495-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 01/21/2010] [Indexed: 10/19/2022]
|
8
|
Namba T, Homan T, Nishimura T, Mima S, Hoshino T, Mizushima T. Up-regulation of S100P Expression by Non-steroidal Anti-inflammatory Drugs and Its Role in Anti-tumorigenic Effects. J Biol Chem 2009; 284:4158-67. [PMID: 19073601 DOI: 10.1074/jbc.m806051200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Takushi Namba
- Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Bruno RD, Gover TD, Burger AM, Brodie AM, Njar VCO. 17alpha-Hydroxylase/17,20 lyase inhibitor VN/124-1 inhibits growth of androgen-independent prostate cancer cells via induction of the endoplasmic reticulum stress response. Mol Cancer Ther 2008; 7:2828-36. [PMID: 18790763 DOI: 10.1158/1535-7163.mct-08-0336] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inhibitors of the enzyme 17alpha-hydroxylase/17,20 lyase are a new class of anti-prostate cancer agents currently undergoing preclinical and clinical development. We have previously reported the superior anticancer activity of our novel 17alpha-hydroxylase/17,20 lyase inhibitor, VN/124-1, against androgen-dependent cancer models. Here, we examined the effect of VN/124-1 on the growth of the androgen-independent cell lines PC-3 and DU-145 and found that the compound inhibits their growth in a dose-dependent manner in vitro (GI50, 7.82 micromol/L and 7.55 micromol/L, respectively). We explored the mechanism of action of VN/124-1 in PC-3 cells through microarray analysis and found that VN/124-1 up-regulated genes involved in stress response and protein metabolism, as well as down-regulated genes involved in cell cycle progression. Follow-up real-time PCR and Western blot analyses revealed that VN/124-1 induces the endoplasmic reticulum stress response resulting in down-regulation of cyclin D1 protein expression and cyclin E2 mRNA. Cell cycle analysis confirmed G1-G0 phase arrest. Measurements of intracellular calcium levels ([Ca2+]i) showed that 20 micromol/L VN/124-1 caused a release of Ca2+ from endoplasmic reticulum stores resulting in a sustained increase in [Ca2+]i. Finally, cotreatment of PC-3 cells with 5, 10, and 20 micromol/L VN/124-1 with 10 nmol/L thapsigargin revealed a synergistic relationship between the compounds in inhibiting PC-3 cell growth. Taken together, these findings show VN/124-1 is endowed with multiple anticancer properties that may contribute to its utility as a prostate cancer therapeutic.
Collapse
Affiliation(s)
- Robert D Bruno
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201-1559, USA
| | | | | | | | | |
Collapse
|
10
|
Surowiak P, Maciejczyk A, Materna V, Drag-Zalesińska M, Wojnar A, Pudelko M, Kedzia W, Spaczyński M, Dietel M, Zabel M, Lage H. Unfavourable prognostic significance of S100P expression in ovarian cancers. Histopathology 2007; 51:125-8. [PMID: 17539915 DOI: 10.1111/j.1365-2559.2007.02714.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|