1
|
Zhang P, Liu W, Wang Y. The mechanisms of tanshinone in the treatment of tumors. Front Pharmacol 2023; 14:1282203. [PMID: 37964867 PMCID: PMC10642231 DOI: 10.3389/fphar.2023.1282203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Tanshinone is a lipophilic compound that is present in traditional Chinese medicine and is derived from the roots of Salvia miltiorrhiza (Danshen). It has been proven to be highly effective in combating tumors in various parts of the body, including liver carcinoma, gastric cancer, ovarian cancer, cervix carcinoma, breast cancer, colon cancer, and prostate cancer. Tanshinone can efficiently prevent the reproduction of cancerous cells, induce cell death, and inhibit the spread of cancerous cells, which are mainly involved in the PI3K/Akt signaling pathway, NF-κB pathway, Bcl-2 family, Caspase cascades, MicroRNA, MAPK signaling pathway, p21, STAT3 pathway, miR30b-P53-PTPN11/SHP2 axis, β-catenin, and Skp2. However, the properties and mechanisms of tanshinone's anti-tumor effects remain unclear currently. Thus, this study aims to review the research progress on tumor prevention and mechanisms of tanshinone to gain new perspectives for further development and clinical application of tanshinone.
Collapse
Affiliation(s)
- Pengyu Zhang
- The Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wendi Liu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Wang
- Department of Histology and Embryology, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Fan D, Yang M, Lee HJ, Lee JH, Kim HS. AVEN: a novel oncogenic biomarker with prognostic significance and implications of AVEN-associated immunophenotypes in lung adenocarcinoma. Front Mol Biosci 2023; 10:1265359. [PMID: 37908231 PMCID: PMC10613694 DOI: 10.3389/fmolb.2023.1265359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction: AVEN, an apoptosis and caspase activation inhibitor, has been associated with adverse clinical outcomes and poor prognosis in Acute myeloid leukemia (AML). Targeting AVEN in AML improves apoptosis sensitivity and chemotherapy efficacy, making it a promising therapeutic target. However, AVEN's role has not been studied in solid tumors. Therefore, our study investigated AVEN as a prognostic biomarker in a more comprehensive manner and developed an AVEN-derived prognostic model in Lung adenocarcinoma (LUAD). Method: Pan-cancer analysis was performed to examine AVEN expression in 33 cancer types obtained from the TCGA database. GEPIA analysis was used to determine the predictive value of AVEN in each cancer type with cancer-specific AVEN expression. Lung Adenocarcinomas (LUAD) patients were grouped into AVENhigh and AVENlow based on AVEN expression level. Differentially expressed genes (DEGs) and pathway enrichment analysis were performed to gain insight into the biological function of AVEN in LUAD. In addition, several deconvolution tools, including Timer, CIBERSORT, EPIC, xCell, Quanti-seq and MCP-counter were used to explore immune infiltration. AVEN-relevant prognostic genes were identified by Random Survival Forest analysis via univariate Cox regression. The AVEN-derived genomic model was established using a multivariate-Cox regression model and GEO datasets (GSE31210, GSE50081) were used to validate its prognostic effect. Results: AVEN expression was increased in several cancer types compared to normal tissue, but its impact on survival was only significant in LUAD in the TCGA cohort. High AVEN expression was significantly correlated with tumor progression and shorter life span in LUAD patients. Pathway analysis was performed with 838 genes associated with AVEN expression and several oncogenic pathways were altered such as the Cell cycle, VEGFA-VEGFR2 pathway, and epithelial-mesenchymal-transition pathway. Immune infiltration was also analyzed, and less infiltrated B cells was observed in AVENhigh patients. Furthermore, an AVEN-derived genomic model was established, demonstrating a reliable and improved prognostic value in TCGA and GEO databases. Conclusion: This study provided evidence that AVEN is accumulated in LUAD compared to adjacent tissue and is associated with poor survival, high tumor progression, and immune infiltration alteration. Moreover, the study introduced the AVEN-derived prognostic model as a promising prognosis tool for LUAD.
Collapse
Affiliation(s)
| | | | | | | | - Hong Sook Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
3
|
Chowdhury MN, Jin H. The RGG motif proteins: Interactions, functions, and regulations. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1748. [PMID: 35661420 PMCID: PMC9718894 DOI: 10.1002/wrna.1748] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 01/31/2023]
Abstract
Proteins with motifs rich in arginines and glycines were discovered decades ago and are functionally involved in a staggering range of essential processes in the cell. Versatile, specific, yet adaptable molecular interactions enabled by the unique combination of arginine and glycine, combined with multiplicity of molecular recognition conferred by repeated di-, tri-, and multiple peptide motifs, allow RGG motif proteins to interact with a broad range of proteins and nucleic acids. Furthermore, posttranslational modifications at the arginines in the motif extend the RGG protein's capacity for a fine-tuned regulation. In this review, we focus on the biochemical properties of the RGG motif, its molecular interactions with RNAs and proteins, and roles of the posttranslational modification in modulating their interactions. We discuss current knowledge of the RGG motif proteins involved in mRNA transport and translation, highlight our merging understanding of their molecular functions in translational regulation and summarize areas of research in the future critical in understanding this important family of proteins. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Mechanisms.
Collapse
Affiliation(s)
- Mashiat N. Chowdhury
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801
| | - Hong Jin
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801,Carl R. Woese Institute for Genomic Biology, 1206 West Gregory Drive, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801,Corresponding author: Phone: (217)244-9493, Fax: (217)244-5858,
| |
Collapse
|
4
|
Ge T, Zhang Y. Tanshinone IIA reverses oxaliplatin resistance in colorectal cancer through microRNA-30b-5p/AVEN axis. Open Med (Wars) 2022; 17:1228-1240. [PMID: 35892081 PMCID: PMC9281591 DOI: 10.1515/med-2022-0512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/11/2022] [Accepted: 05/28/2022] [Indexed: 12/13/2022] Open
Abstract
This research aims to explore the role of Tanshinone IIA (Tan IIA) and microRNA (miR)-30b-5p in chemoresistance of colorectal cancer (CRC). The expression levels of miR-30b-5p and apoptosis and caspase activation inhibitor (AVEN) was detected by reverse transcription-quantitative polymerase chain reaction assay. The cell proliferation and apoptosis were examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays. The target relationship between miR-30b-5p and AVEN was confirmed by Dual-luciferase reporter assay. Transwell assay was performed to assess CRC cells’ metastasis. Western blot was carried out to measure the apoptosis-related protein. The results showed that miR-30b-5p was lowly expressed in oxaliplatin-resistance CRC cells SW480 (SW480/R) compared to SW480 cells. Overexpression of miR-30b-5p significantly suppressed the malignant biological behaviors of SW480/R cells and significantly promoted the sensitivity of SW480/R cells to oxaliplatin by down-regulated AVEN expression. Besides, Tan IIA treatment upregulated miR-30b-5p expression in SW480/R cells. Moreover, miR-30b-5p upregulation strengthened the promoting effect of Tan IIA on the sensitivity of SW480/R cells to oxaliplatin. In conclusion, Tan IIA and miR-30b-5p could reverse oxaliplatin resistance of CRC cells and may thus be potential treatment strategies for treating patients with CRC.
Collapse
Affiliation(s)
- Tingrui Ge
- Department of Colorectal Surgery, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| | - Yonggang Zhang
- Department of Colorectal Surgery, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| |
Collapse
|
5
|
Song J, Perreault JP, Topisirovic I, Richard S. RNA G-quadruplexes and their potential regulatory roles in translation. ACTA ACUST UNITED AC 2016; 4:e1244031. [PMID: 28090421 PMCID: PMC5173311 DOI: 10.1080/21690731.2016.1244031] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022]
Abstract
DNA guanine (G)-rich 4-stranded helical nucleic acid structures called G-quadruplexes (G4), have been extensively studied during the last decades. However, emerging evidence reveals that 5′- and 3′-untranslated regions (5′- and 3′-UTRs) as well as open reading frames (ORFs) contain putative RNA G-quadruplexes. These stable secondary structures play key roles in telomere homeostasis and RNA metabolism including pre-mRNA splicing, polyadenylation, mRNA targeting and translation. Interestingly, multiple RNA binding proteins such as nucleolin, FMRP, DHX36, and Aven were identified to bind RNA G-quadruplexes. Moreover, accumulating reports suggest that RNA G-quadruplexes regulate translation in cap-dependent and -independent manner. Herein, we discuss potential roles of RNA G-quadruplexes and associated trans-acting factors in the regulation of mRNA translation.
Collapse
Affiliation(s)
- Jingwen Song
- Terry Fox Molecular Oncology Group and Segal Cancer Center, McGill University, Montréal, Québec, Canada; Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada; Department of Oncology, McGill University, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada
| | | | - Ivan Topisirovic
- Terry Fox Molecular Oncology Group and Segal Cancer Center, McGill University, Montréal, Québec, Canada; Department of Oncology, McGill University, Montréal, Québec, Canada; Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Stéphane Richard
- Terry Fox Molecular Oncology Group and Segal Cancer Center, McGill University, Montréal, Québec, Canada; Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada; Department of Oncology, McGill University, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
6
|
Jayaraman A, Jamil K, Khan HA. Identifying new targets in leukemogenesis using computational approaches. Saudi J Biol Sci 2015; 22:610-22. [PMID: 26288567 PMCID: PMC4537869 DOI: 10.1016/j.sjbs.2015.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/04/2015] [Accepted: 01/12/2015] [Indexed: 02/08/2023] Open
Abstract
There is a need to identify novel targets in Acute Lymphoblastic Leukemia (ALL), a hematopoietic cancer affecting children, to improve our understanding of disease biology and that can be used for developing new therapeutics. Hence, the aim of our study was to find new genes as targets using in silico studies; for this we retrieved the top 10% overexpressed genes from Oncomine public domain microarray expression database; 530 overexpressed genes were short-listed from Oncomine database. Then, using prioritization tools such as ENDEAVOUR, DIR and TOPPGene online tools, we found fifty-four genes common to the three prioritization tools which formed our candidate leukemogenic genes for this study. As per the protocol we selected thirty training genes from PubMed. The prioritized and training genes were then used to construct STRING functional association network, which was further analyzed using cytoHubba hub analysis tool to investigate new genes which could form drug targets in leukemia. Analysis of the STRING protein network built from these prioritized and training genes led to identification of two hub genes, SMAD2 and CDK9, which were not implicated in leukemogenesis earlier. Filtering out from several hundred genes in the network we also found MEN1, HDAC1 and LCK genes, which re-emphasized the important role of these genes in leukemogenesis. This is the first report on these five additional signature genes in leukemogenesis. We propose these as new targets for developing novel therapeutics and also as biomarkers in leukemogenesis, which could be important for prognosis and diagnosis.
Collapse
Affiliation(s)
- Archana Jayaraman
- Centre for Biotechnology and Bioinformatics, School of Life Sciences, Jawaharlal Nehru Institute of Advanced Studies (JNIAS), Secunderabad, Telangana, India
- Center for Biotechnology, Jawaharlal Nehru Technological University (JNTUH), Kukatpally, Hyderabad, Telangana, India
| | - Kaiser Jamil
- Centre for Biotechnology and Bioinformatics, School of Life Sciences, Jawaharlal Nehru Institute of Advanced Studies (JNIAS), Secunderabad, Telangana, India
- Corresponding author. at: Centre for Biotechnology and Bioinformatics, School of Life Sciences, Jawaharlal Nehru Institute of Advanced Studies (JNIAS), Buddha Bhawan, 6th Floor, M.G. Road, Secunderabad 500003, Telangana, India. Tel.: + 91 9676872626; fax: +91 40 27541551.
| | - Haseeb A. Khan
- Department of Biochemistry, College of Sciences, Bldg. 5, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Thandapani P, Song J, Gandin V, Cai Y, Rouleau SG, Garant JM, Boisvert FM, Yu Z, Perreault JP, Topisirovic I, Richard S. Aven recognition of RNA G-quadruplexes regulates translation of the mixed lineage leukemia protooncogenes. eLife 2015; 4. [PMID: 26267306 PMCID: PMC4561382 DOI: 10.7554/elife.06234] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 08/11/2015] [Indexed: 12/17/2022] Open
Abstract
G-quadruplexes (G4) are extremely stable secondary structures forming stacks of guanine tetrads. DNA G4 structures have been extensively studied, however, less is known about G4 motifs in mRNAs, especially in their coding sequences. Herein, we show that Aven stimulates the mRNA translation of the mixed lineage leukemia (MLL) proto-oncogene in an arginine methylation-dependent manner. The Aven RGG/RG motif bound G4 structures within the coding regions of the MLL1 and MLL4 mRNAs increasing their polysomal association and translation, resulting in the induction of transcription of leukemic genes. The DHX36 RNA helicase associated with the Aven complex and was required for optimal translation of G4 mRNAs. Depletion of Aven led to a decrease in synthesis of MLL1 and MLL4 proteins resulting in reduced proliferation of leukemic cells. These findings identify an Aven-centered complex that stimulates the translation of G4 harboring mRNAs, thereby promoting survival of leukemic cells. DOI:http://dx.doi.org/10.7554/eLife.06234.001 To make a protein, the DNA sequence that encodes it is first copied to make a molecule of messenger RNA (or mRNA for short). The mRNA is then used as a set of instructions to assemble a protein in a process called translation. Both DNA and RNA molecules can fold into particular shapes. One such structure is known as a G-quartet and involves the DNA or RNA folding back on itself to form a highly stable planar structure. Stacks of G-quartets can form structures known as G-quadruplexes, but little is known about the G-quadruplexes that form in mRNA molecules. Leukemia affects cells in the bone marrow and causes blood cells to develop abnormally. A protein called Aven is often found in increased amounts in certain types of leukemic cells, but it was not clear how Aven affects how leukemia develops. Thandapani, Song et al. have now found that in leukemic cells, Aven binds to G-quadruplexes found in two mRNA molecules that encode proteins that are linked to leukemia. This binding increases the translation of these mRNAs, with translation occurring most efficiently when a particular enzyme called a helicase—which remodels RNA—also bound to Aven. Reducing the amount of Aven in cells caused fewer of the leukemic proteins to be produced, which also reduced the growth and multiplcation of leukemic cells. These findings raise the possibility that drugs that disrupt how Aven works could form part of treatments for leukemia. The next challenge will be to identify the signaling pathways that communicate with Aven and to define all the G-quadruplex mRNAs that are regulated by Aven. DOI:http://dx.doi.org/10.7554/eLife.06234.002
Collapse
Affiliation(s)
- Palaniraja Thandapani
- Terry Fox Molecular Oncology Group, Segal Cancer Center, Jewish General Hospital, Montréal, Canada
| | - Jingwen Song
- Terry Fox Molecular Oncology Group, Segal Cancer Center, Jewish General Hospital, Montréal, Canada
| | - Valentina Gandin
- Terry Fox Molecular Oncology Group, Segal Cancer Center, Jewish General Hospital, Montréal, Canada
| | - Yutian Cai
- Terry Fox Molecular Oncology Group, Segal Cancer Center, Jewish General Hospital, Montréal, Canada
| | - Samuel G Rouleau
- Département de Biochimie, Université de Sherbrooke, Sherbrooke, Canada
| | | | - Francois-Michel Boisvert
- Département d'Anatomie et de Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, Canada
| | - Zhenbao Yu
- Terry Fox Molecular Oncology Group, Segal Cancer Center, Jewish General Hospital, Montréal, Canada
| | | | - Ivan Topisirovic
- Terry Fox Molecular Oncology Group, Segal Cancer Center, Jewish General Hospital, Montréal, Canada
| | - Stéphane Richard
- Terry Fox Molecular Oncology Group, Segal Cancer Center, Jewish General Hospital, Montréal, Canada
| |
Collapse
|
8
|
Siamakpour-Reihani S, Owzar K, Jiang C, Scarbrough PM, Craciunescu OI, Horton JK, Dressman HK, Blackwell KL, Dewhirst MW. Genomic profiling in locally advanced and inflammatory breast cancer and its link to DCE-MRI and overall survival. Int J Hyperthermia 2015; 31:386-95. [PMID: 25811737 PMCID: PMC4955681 DOI: 10.3109/02656736.2015.1016557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE We have previously reported that dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) perfusion patterns obtained from locally advanced breast cancer (LABC) patients prior to neoadjuvant therapy predicted pathologic clinical response. Genomic analyses were also independently conducted on the same patient population. This retrospective study was performed to test two hypotheses: (1) gene expression profiles are associated with DCE-MRI perfusion patterns, and (2) association between long-term overall survival data and gene expression profiles can lead to the identification of novel predictive biomarkers. METHODS We utilised RNA microarray and DCE-MRI data from 47 LABC patients, including 13 inflammatory breast cancer (IBC) patients. Association between gene expression profile and DCE-MRI perfusion patterns (centrifugal and centripetal) was determined by Wilcoxon rank sum test. Association between gene expression level and survival was assessed using a Cox rank score test. Additional genomic analysis of the IBC subset was conducted, with a period of follow-up of up to 11 years. Associations between gene expression and overall survival were further assessed in The Cancer Genome Atlas Data Portal. RESULTS Differences in gene expression profiles were seen between centrifugal and centripetal perfusion patterns in the sulphotransferase family, cytosolic, 1 A, phenol-preferring, members 1 and 2 (SULT1A1, SULT1A2), poly (ADP-ribose) polymerase, member 6 (PARP6), and metastasis tumour antigen1 (MTA1). In the IBC subset our analyses demonstrated that differential expression of 45 genes was associated with long-term survival. CONCLUSIONS Here we have demonstrated an association between DCE-MRI perfusion patterns and gene expression profiles. In addition we have reported on candidate prognostic biomarkers in IBC patients, with some of the genes being significantly associated with survival in IBC and LABC.
Collapse
Affiliation(s)
| | - Kouros Owzar
- Department of Biostatistics & Bioinformatics, Duke University Medical Center, Durham, North Carolina
- Bioinformatics Shared Resource, Duke Cancer Institute
| | - Chen Jiang
- Bioinformatics Shared Resource, Duke Cancer Institute
| | | | - Oana I. Craciunescu
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Janet K. Horton
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Holly K. Dressman
- Department of Molecular Genetics and Microbiology and Duke Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC
| | - Kimberly L. Blackwell
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, USA
| | - Mark W. Dewhirst
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
9
|
Baranski Z, Booij TH, Cleton-Jansen AM, Price LS, van de Water B, Bovée JVMG, Hogendoorn PCW, Danen EHJ. Aven-mediated checkpoint kinase control regulates proliferation and resistance to chemotherapy in conventional osteosarcoma. J Pathol 2015; 236:348-59. [PMID: 25757065 DOI: 10.1002/path.4528] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 02/23/2015] [Accepted: 03/04/2015] [Indexed: 12/25/2022]
Abstract
Conventional high-grade osteosarcoma is the most common primary bone sarcoma, with relatively high incidence in young people. In this study we found that expression of Aven correlates inversely with metastasis-free survival in osteosarcoma patients and is increased in metastases compared to primary tumours. Aven is an adaptor protein that has been implicated in anti-apoptotic signalling and serves as an oncoprotein in acute lymphoblastic leukaemia. In osteosarcoma cells, silencing Aven triggered G2 cell-cycle arrest; Chk1 protein levels were attenuated and ATR-Chk1 DNA damage response signalling in response to chemotherapy was abolished in Aven-depleted osteosarcoma cells, while ATM, Chk2 and p53 activation remained intact. Osteosarcoma is notoriously difficult to treat with standard chemotherapy, and we examined whether pharmacological inhibition of the Aven-controlled ATR-Chk1 response could sensitize osteosarcoma cells to genotoxic compounds. Indeed, pharmacological inhibitors targeting Chk1/Chk2 or those selective for Chk1 synergized with standard chemotherapy in 2D cultures. Likewise, in 3D extracellular matrix-embedded cultures, Chk1 inhibition led to effective sensitization to chemotherapy. Together, these findings implicate Aven in ATR-Chk1 signalling and point towards Chk1 inhibition as a strategy to sensitize human osteosarcomas to chemotherapy.
Collapse
Affiliation(s)
- Zuzanna Baranski
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands
| | - Tijmen H Booij
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands
| | | | - Leo S Price
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands.,OcellO B.V. Leiden, The Netherlands
| | - Bob van de Water
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Centre (LUMC), The Netherlands
| | | | - Erik H J Danen
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands
| |
Collapse
|
10
|
Han KY, Hwang JW, Bae GU, Kim SN, Kim YK. Akt regulation of Aven contributes to the sensitivity of cancer cells to chemotherapeutic agents. Mol Med Rep 2015; 11:3866-71. [PMID: 25573060 DOI: 10.3892/mmr.2015.3158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 11/19/2014] [Indexed: 11/06/2022] Open
Abstract
In the present study, it was demonstrated that the protein level of the apoptosis inhibitor Aven is regulated by the Akt signaling pathway, evidenced by the observation that Aven levels were significantly increased in MCF7 constitutively active (CA)‑Akt cells and significantly inhibited following treatment with LY294002. This increase in Aven appears not to be mediated by transcriptional regulation and protein stabilization. However, the level of Aven was inversely correlated with the level of cathepsin D, which is a protease responsible for generating the C‑terminal of Aven, ΔN‑Aven, indicating that the level of Aven appears to be regulated by cathepsin D activity. It has previously been reported that ΔN‑Aven is the active form of Aven, which functions as an anti‑apoptotic molecule. Notably, low levels of ΔN‑Aven were detected in MCF7 CA‑Akt cells, which were more sensitive to anticancer drugs. Taken together, the current results suggest that the expression of Aven is regulated by the Akt signaling pathway through cathepsin D activity, which contributes to the sensitivity of cancer cells to chemotherapeutic agents.
Collapse
Affiliation(s)
- Kyoung-Youn Han
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 140‑742, Republic of Korea
| | - Jee Won Hwang
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 140‑742, Republic of Korea
| | - Gyu-Un Bae
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 140‑742, Republic of Korea
| | - Su-Nam Kim
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung Institute, Gangneung, Gangwon‑do 210‑340, Republic of Korea
| | - Yong Kee Kim
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 140‑742, Republic of Korea
| |
Collapse
|
11
|
Starikova EG, Tashireva LA, Novitsky VV, Ryazantseva NV. Nitric oxide donor NOC-5 increases XIAP and Aven level in Jurkat cells. Cell Biol Int 2014; 38:799-802. [PMID: 24677341 DOI: 10.1002/cbin.10262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/27/2014] [Indexed: 11/06/2022]
Abstract
Mitochondrial permeabilisation after NO donor application did not activate caspase-9. We have studied the X-linked apoptosis inhibitor (XIAP) and Aven protein content in NO-treated Jurkat cells. The level of both proteins increased in NO-treated cells. Thus the increase in XIAP and Aven content could be the cause of the lack of caspase-9 activity after mitochondrial permeabilisation in NO-treated Jurkat cells.
Collapse
Affiliation(s)
- Elena G Starikova
- Siberian State Medical University of the Ministry of Health Care of the Russian Federation, 634055, Tomsk, Russia
| | | | | | | |
Collapse
|
12
|
Ouzounova M, Vuong T, Ancey PB, Ferrand M, Durand G, Le-Calvez Kelm F, Croce C, Matar C, Herceg Z, Hernandez-Vargas H. MicroRNA miR-30 family regulates non-attachment growth of breast cancer cells. BMC Genomics 2013; 14:139. [PMID: 23445407 PMCID: PMC3602027 DOI: 10.1186/1471-2164-14-139] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 02/23/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND A subset of breast cancer cells displays increased ability to self-renew and reproduce breast cancer heterogeneity. The characterization of these so-called putative breast tumor-initiating cells (BT-ICs) may open the road for novel therapeutic strategies. As microRNAs (miRNAs) control developmental programs in stem cells, BT-ICs may also rely on specific miRNA profiles for their sustained activity. To explore the notion that miRNAs may have a role in sustaining BT-ICs, we performed a comprehensive profiling of miRNA expression in a model of putative BT-ICs enriched by non-attachment growth conditions. RESULTS We found breast cancer cells grown under non-attachment conditions display a unique pattern of miRNA expression, highlighted by a marked low expression of miR-30 family members relative to parental cells. We further show that miR-30a regulates non-attachment growth. A target screening revealed that miR-30 family redundantly modulates the expression of apoptosis and proliferation-related genes. At least one of these targets, the anti-apoptotic protein AVEN, was able to partially revert the effect of miR-30a overexpression. Finally, overexpression of miR-30a in vivo was associated with reduced breast tumor progression. CONCLUSIONS miR30-family regulates the growth of breast cancer cells in non-attachment conditions. This is the first analysis of target prediction in a whole family of microRNAs potentially involved in survival of putative BT-ICs.
Collapse
Affiliation(s)
- Maria Ouzounova
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 rue Albert-Thomas, Lyon, 69008, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Eißmann M, Melzer IM, Fernández SBM, Michel G, Hrabě de Angelis M, Hoefler G, Finkenwirth P, Jauch A, Schoell B, Grez M, Schmidt M, Bartholomae CC, Newrzela S, Haetscher N, Rieger MA, Zachskorn C, Mittelbronn M, Zörnig M. Overexpression of the anti-apoptotic protein AVEN contributes to increased malignancy in hematopoietic neoplasms. Oncogene 2012; 32:2586-91. [PMID: 22751129 DOI: 10.1038/onc.2012.263] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AVEN has been identified as an inhibitor of apoptosis, which binds to the adaptor protein, APAF-1, and thereby prevents apoptosome formation and mitochondrial apoptosis. Recent data have demonstrated high expression levels of AVEN messenger RNA in acute leukemias as well as a positive correlation between AVEN mRNA overexpression and poor prognosis in childhood acute lymphoblastic leukemia. On the basis of these data, we investigated the potential involvement of AVEN in tumorigenesis. First, we confirmed the overexpression of AVEN in T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) patient samples. We then established a transgenic mouse model with T-cell-specific overexpression of AVEN, with which we demonstrated the oncogenic cooperation of AVEN with heterozygous loss of p53. Finally, we used a subcutaneous xenograft mouse model to show that AVEN knockdown in the T-ALL cell lines, MOLT-4 and CCRF-CEM, and in the acute myeloblastic leukemia cell line, Kasumi-1, leads to a halt in tumor growth owing to the increased apoptosis and decreased proliferation of tumor cells. Collectively, our data demonstrate that the anti-apoptotic molecule, AVEN, functions as an oncoprotein in hematopoietic neoplasms.
Collapse
Affiliation(s)
- M Eißmann
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
The Apaf-1-binding protein Aven is cleaved by Cathepsin D to unleash its anti-apoptotic potential. Cell Death Differ 2012; 19:1435-45. [PMID: 22388353 DOI: 10.1038/cdd.2012.17] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The anti-apoptotic molecule Aven was originally identified in a yeast two-hybrid screen for Bcl-x(L)-interacting proteins and has also been found to bind Apaf-1, thereby interfering with Apaf-1 self-association during apoptosome assembly. Aven is expressed in a wide variety of adult tissues and cell lines, and there is increasing evidence that its overexpression correlates with tumorigenesis, particularly in acute leukemias. The mechanism by which the anti-apoptotic activity of Aven is regulated remains poorly understood. Here we shed light on this issue by demonstrating that proteolytic removal of an inhibitory N-terminal Aven domain is necessary to activate the anti-apoptotic potential of the molecule. Furthermore, we identify Cathepsin D (CathD) as the protease responsible for Aven cleavage. On the basis of our results, we propose a model of Aven activation by which its N-terminal inhibitory domain is removed by CathD-mediated proteolysis, thereby unleashing its cytoprotective function.
Collapse
|
15
|
Zou S, Chang J, LaFever L, Tang W, Johnson EL, Hu J, Wilk R, Krause HM, Drummond-Barbosa D, Irusta PM. Identification of dAven, a Drosophila melanogaster ortholog of the cell cycle regulator Aven. Cell Cycle 2011; 10:989-98. [PMID: 21368576 DOI: 10.4161/cc.10.6.15080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Aven is a regulator of the DNA-damage response and G2/M cell cycle progression. Overexpression of Aven is associated with poor prognosis in patients with childhood acute lymphoblastic leukemia and acute myeloid leukemia, and altered intracellular Aven distribution is associated with infiltrating ductal carcinoma and papillary carcinoma breast cancer subtypes. Although Aven orthologs have been identified in most vertebrate species, no Aven gene has been reported in invertebrates. Here, we describe a Drosophila melanogaster open reading frame (ORF) that shares sequence and functional similarities with vertebrate Aven genes. The protein encoded by this ORF, which we named dAven, contains several domains that are highly conserved among Aven proteins of fish, amphibian, bird and mammalian origins. In flies, knockdown of dAven by RNA interference (RNAi) resulted in lethality when its expression was reduced either ubiquitously or in fat cells using Gal4 drivers. Animals undergoing moderate dAven knockdown in the fat body had smaller fat cells displaying condensed chromosomes and increased levels of the mitotic marker phosphorylated histone H3 (PHH3), suggesting that dAven was required for normal cell cycle progression in this tissue. Remarkably, expression of dAven in Xenopus egg extracts resulted in G2/M arrest that was comparable to that caused by human Aven. Taken together, these results suggest that, like its vertebrate counterparts, dAven plays a role in cell cycle regulation. Drosophila could be an excellent model for studying the function of Aven and identifying cellular factors that influence its activity, revealing information that may be relevant to human disease.
Collapse
Affiliation(s)
- Sige Zou
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kutuk O, Temel SG, Tolunay S, Basaga H. Aven blocks DNA damage-induced apoptosis by stabilising Bcl-xL. Eur J Cancer 2010; 46:2494-505. [PMID: 20619636 DOI: 10.1016/j.ejca.2010.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 06/01/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
Abstract
Induction of apoptosis by DNA-damaging agents involves the activation of mitochondrial apoptotic pathway. Aven has been identified as an antiapoptotic protein and has been shown to activate ATM in response to DNA damage. In this study, we demonstrated that enforced expression of Aven blocks UV-irradiation-, SN-38- or cisplatin-induced apoptosis upstream of mitochondria by stabilising Bcl-xL protein levels in breast cancer cells. Aven silencing by RNA interference markedly enhanced apoptotic response following treatment with DNA-damaging agents. Aven is complexed with Bcl-xL in untreated breast cancer cells and treatment with DNA-damaging agents led to decreased Aven/Bcl-xL interaction. Importantly, Bcl-xL was necessary for the prosurvival activity of Aven and depletion of Bcl-xL abrogated Aven-mediated protection against DNA damage-induced apoptosis. Analysis of breast cancer tissue microarrays revealed decreased Aven nuclear expression in breast cancer tissues compared with non-neoplastic breast tissues. In particular, we detected reduced nuclear expression of Aven in infiltrating ductal carcinoma and papillary carcinoma breast cancer subtypes compared with non-neoplastic breast tissues and infiltrating lobular breast cancer tissues. Our results suggest that Aven is an important mediator in DNA damage-induced apoptotic signalling in breast cancer cells and its nuclear expression is altered in breast cancer tissues, which may contribute to genomic instability in breast cancer tumours.
Collapse
Affiliation(s)
- Ozgur Kutuk
- Biological Sciences and Bioengineering Program, Faculty of Natural Sciences and Engineering, Sabanci University, Istanbul, Turkey
| | | | | | | |
Collapse
|
17
|
Sung KW, Choi J, Hwang YK, Lee SJ, Kim HJ, Kim JY, Cho EJ, Yoo KH, Koo HH. Overexpression of X-linked inhibitor of apoptosis protein (XIAP) is an independent unfavorable prognostic factor in childhood de novo acute myeloid leukemia. J Korean Med Sci 2009; 24:605-13. [PMID: 19654940 PMCID: PMC2719207 DOI: 10.3346/jkms.2009.24.4.605] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Accepted: 09/21/2008] [Indexed: 11/20/2022] Open
Abstract
The overexpression of X-linked inhibitor of apoptosis protein (XIAP), a member of IAP family protein, is intuitively expected to be associated with unfavorable clinical features in malignancies; however, there have been only a very limited number of studies reporting the clinical relevance of XIAP expression. This study was performed to investigate the prognostic relevance of XIAP expression in childhood acute myeloid leukemia (AML). In 53 children with de novo AML, the level of XIAP expression was determined by using quantitative reverse transcriptase-polymerase chain reaction and was analyzed with respect to the clinical characteristics at diagnosis and treatment outcomes. As a result, the XIAP expression was found to be higher in patients with extramedullary disease than in those without (P=0.014). In addition, XIAP overexpression (>or=median expression) was associated with an unfavorable day 7 response to induction chemotherapy and also associated with a worse 3-yr relapsefree survival rate (52.7+/-20.9% vs. 85.9+/-14.8%, P=0.014). Multivariate analyses revealed that XIAP overexpression was an independent unfavorable prognostic factor for relapse-free survival (hazard ratio, 6.16; 95% confidence interval, 1.48-25.74; P=0.013). Collectively, XIAP overexpression may be used as an unfavorable prognostic marker in childhood AML.
Collapse
Affiliation(s)
- Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jaewon Choi
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yu Kyeong Hwang
- Division of Immunotherapy, Mogam Biotechnology Research Institute, Yongin, Korea
| | - Sang Jin Lee
- Genitourinary Cancer Branch, National Cancer Center, Ilsan, Korea
| | - Hee-Jin Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ju Youn Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun Joo Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Guo JY, Yamada A, Kajino T, Wu JQ, Tang W, Freel CD, Feng J, Chau BN, Wang MZ, Margolis SS, Yoo HY, Wang XF, Dunphy WG, Irusta PM, Hardwick JM, Kornbluth S. Aven-dependent activation of ATM following DNA damage. Curr Biol 2008; 18:933-42. [PMID: 18571408 DOI: 10.1016/j.cub.2008.05.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 05/23/2008] [Accepted: 05/23/2008] [Indexed: 01/22/2023]
Abstract
BACKGROUND In response to DNA damage, cells undergo either cell-cycle arrest or apoptosis, depending on the extent of damage and the cell's capacity for DNA repair. Cell-cycle arrest induced by double-stranded DNA breaks depends on activation of the ataxia-telangiectasia (ATM) protein kinase, which phosphorylates cell-cycle effectors such as Chk2 and p53 to inhibit cell-cycle progression. ATM is recruited to double-stranded DNA breaks by a complex of sensor proteins, including Mre11/Rad50/Nbs1, resulting in autophosphorylation, monomerization, and activation of ATM kinase. RESULTS In characterizing Aven protein, a previously reported apoptotic inhibitor, we have found that Aven can function as an ATM activator to inhibit G2/M progression. Aven bound to ATM and Aven overexpressed in cycling Xenopus egg extracts prevented mitotic entry and induced phosphorylation of ATM and its substrates. Immunodepletion of endogenous Aven allowed mitotic entry even in the presence of damaged DNA, and RNAi-mediated knockdown of Aven in human cells prevented autophosphorylation of ATM at an activating site (S1981) in response to DNA damage. Interestingly, Aven is also a substrate of the ATM kinase. Mutation of ATM-mediated phosphorylation sites on Aven reduced its ability to activate ATM, suggesting that Aven activation of ATM after DNA damage is enhanced by ATM-mediated Aven phosphorylation. CONCLUSIONS These results identify Aven as a new ATM activator and describe a positive feedback loop operating between Aven and ATM. In aggregate, these findings place Aven, a known apoptotic inhibitor, as a critical transducer of the DNA-damage signal.
Collapse
Affiliation(s)
- Jessie Yanxiang Guo
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Current Awareness in Hematological Oncology. Hematol Oncol 2007. [DOI: 10.1002/hon.795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|