1
|
Li W, Zou L, Huang S, Miao H, Liu K, Geng Y, Liu Y, Wu W. The anticancer activity of bile acids in drug discovery and development. Front Pharmacol 2024; 15:1362382. [PMID: 38444942 PMCID: PMC10912613 DOI: 10.3389/fphar.2024.1362382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
Bile acids (BAs) constitute essential components of cholesterol metabolites that are synthesized in the liver, stored in the gallbladder, and excreted into the intestine through the biliary system. They play a crucial role in nutrient absorption, lipid and glucose regulation, and the maintenance of metabolic homeostasis. In additional, BAs have demonstrated the ability to attenuate disease progression such as diabetes, metabolic disorders, heart disease, and respiratory ailments. Intriguingly, recent research has offered exciting evidence to unveil their potential antitumor properties against various cancer cell types including tamoxifen-resistant breast cancer, oral squamous cell carcinoma, cholangiocarcinoma, gastric cancer, colon cancer, hepatocellular carcinoma, prostate cancer, gallbladder cancer, neuroblastoma, and others. Up to date, multiple laboratories have synthesized novel BA derivatives to develop potential drug candidates. These derivatives have exhibited the capacity to induce cell death in individual cancer cell types and display promising anti-tumor activities. This review extensively elucidates the anticancer activity of natural BAs and synthetic derivatives in cancer cells, their associated signaling pathways, and therapeutic strategies. Understanding of BAs and their derivatives activities and action mechanisms will evidently assist anticancer drug discovery and devise novel treatment.
Collapse
Affiliation(s)
- Weijian Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Lu Zou
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Shuai Huang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huijie Miao
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Ke Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Yajun Geng
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Wenguang Wu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| |
Collapse
|
2
|
Synthesis and Biological Evaluation of 3-Amino-4,4-Dimethyl Lithocholic Acid Derivatives as Novel, Selective, and Cellularly Active Allosteric SHP1 Activators. Molecules 2023; 28:molecules28062488. [PMID: 36985458 PMCID: PMC10056611 DOI: 10.3390/molecules28062488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1), a non-receptor member of the protein tyrosine phosphatase (PTP) family, negatively regulates several signaling pathways that are responsible for pathological cell processes in cancers. In this study, we report a series of 3-amino-4,4-dimethyl lithocholic acid derivatives as SHP1 activators. The most potent compounds, 5az-ba, showed low micromolar activating effects (EC50: 1.54–2.10 μM) for SHP1, with 7.63–8.79-fold maximum activation and significant selectivity over the closest homologue Src homology 2 domain-containing protein tyrosine phosphatase 2 (SHP2) (>32-fold). 5az-ba showed potent anti-tumor effects with IC50 values of 1.65–5.51 μM against leukemia and lung cancer cells. A new allosteric mechanism of SHP1 activation, whereby small molecules bind to a central allosteric pocket and stabilize the active conformation of SHP1, was proposed. The activation mechanism was consistent with the structure–activity relationship (SAR) data. This study demonstrates that 3-amino-4,4-dimethyl lithocholic acid derivatives can be selective SHP1 activators with potent cellular efficacy.
Collapse
|
4
|
Kozanecka-Okupnik W, Jasiewicz B, Pospieszny T, Matuszak M, Mrówczyńska L. Haemolytic activity of formyl- and acetyl-derivatives of bile acids and their gramine salts. Steroids 2017; 126:50-56. [PMID: 28711706 DOI: 10.1016/j.steroids.2017.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/13/2017] [Accepted: 07/10/2017] [Indexed: 12/16/2022]
Abstract
Bile acids (lithocholic: LCA, deoxycholic: DCA and cholic: CA) and their formyl- and acetyl-derivatives can be used as starting material in chemical synthesis of compounds with different biological activity strongly depended on their chemical structures. Our previous studies showed that biological activity of bile acids salts with gramine toward human erythrocytes was significantly different from the activity of bile acids alone. Moreover, gramine effectively modified the membrane perturbing activity of other steroids. As a continuation of our work, the haemolytic activity of formyl- and acetyl-substituet bile acids as well as their gramine salts was studied in vitro. The structures of new compounds were confirmed by spectral (NMR, FT-IR) analysis, mass spectrometry (ESI-MS) as well as PM5 semiempirical methods. The results shown that the haemolytic activity of formyl- and acetyl-LCA and DCA was significantly higher in comparison with their native forms at the whole concentration range. At high concentration, formyl derivative of CA was as effective as LCA and DCA derivatives whereas at lower concentration its haemolytic activity was at the level of original acid. The acetyl-CA was not active as membrane perturbing agents. Furthermore, gramine significantly decreased the membrane-perturbing activity of hydrophobic bile acids derivatives. The results obtained with the cellular system are in line with physicochemical calculation.
Collapse
Affiliation(s)
| | - Beata Jasiewicz
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland.
| | - Tomasz Pospieszny
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland
| | - Monika Matuszak
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Lucyna Mrówczyńska
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| |
Collapse
|
5
|
Takahashi T, Kawakami K, Mishima S, Akimoto M, Takenaga K, Suzumiya J, Honma Y. Cyclopamine induces eosinophilic differentiation and upregulates CD44 expression in myeloid leukemia cells. Leuk Res 2011; 35:638-45. [DOI: 10.1016/j.leukres.2010.09.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/27/2010] [Accepted: 09/27/2010] [Indexed: 12/26/2022]
|
6
|
Mansell JP, Shorez D, Farrar D, Nowghani M. Lithocholate--a promising non-calcaemic calcitriol surrogate for promoting human osteoblast maturation upon biomaterials. Steroids 2009; 74:963-70. [PMID: 19646460 DOI: 10.1016/j.steroids.2009.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 05/19/2009] [Accepted: 07/20/2009] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND AIMS Calcitriol, an active vitamin D metabolite, has a limited application in bone repair because of its undesirable hypercalcaemic action. However it has emerged that lithocholic acid (LCA) is a non-calcaemic vitamin D receptor ligand but whether this steroid can support osteoblast maturation has not been reported. Using the human osteoblast cell line, MG63, we explored the potential of LCA and LCA derivatives to secure osteoblast maturation. RESULTS The co-stimulation of cells with LCA, LCA acetate or LCA acetate methyl ester (0.5-5 microM) and lysophosphatidic acid (LPA, 20 microM) resulted in clear, synergistic increases in MG63 maturation that was both time and dose dependent. Cells grown upon both titanium and hydroxyapatite, two widely used implant materials, responded well to co-treatment with LCA acetate (5 microM) and LPA (20 microM) as demonstrated by stark, synergistic increases in ALP activity. Evidence of activator protein-1 (AP-1) stimulation by LCA acetate (30 microM) was demonstrated using an AP-1 luciferase reporter assay. Synergistic increases in ALP activity, and therefore osteoblast maturation, were observed for MG63 cells co-stimulated with LCA acetate (5 microM) and either epidermal growth factor (10 ng/ml) or transforming growth factor-beta (10 ng/ml). Ligands acting on either the farnesoid X receptor or pregnane X receptor could not substitute for the action of LCA acetate on MG63 maturation. CONCLUSIONS Lithocholate is able to act as a calcitriol surrogate in generating mature osteoblasts. Given that LCA is non-calcaemic it is likely to find an application in bone repair/regeneration by aiding matrix calcification at implant sites.
Collapse
Affiliation(s)
- Jason Peter Mansell
- Department of Oral & Dental Science, University of Bristol Dental School, Lower Maudlin Street, Bristol, BS1 2LY, UK.
| | | | | | | |
Collapse
|
7
|
Amano Y, Cho Y, Matsunawa M, Komiyama K, Makishima M. Increased nuclear expression and transactivation of vitamin D receptor by the cardiotonic steroid bufalin in human myeloid leukemia cells. J Steroid Biochem Mol Biol 2009; 114:144-51. [PMID: 19429444 DOI: 10.1016/j.jsbmb.2009.01.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 01/25/2009] [Accepted: 01/28/2009] [Indexed: 12/18/2022]
Abstract
The active form of vitamin D(3), 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], is a potent ligand for the nuclear receptor vitamin D receptor (VDR) and induces myeloid leukemia cell differentiation. The cardiotonic steroid bufalin enhances vitamin D-induced differentiation of leukemia cells and VDR transactivation activity. In this study, we examined the combined effects of 1,25(OH)(2)D(3) and bufalin on differentiation and VDR target gene expression in human leukemia cells. Bufalin in combination with 1,25(OH)(2)D(3) enhanced the expression of VDR target genes, such as CYP24A1 and cathelicidin antimicrobial peptide, and effectively induced differentiation phenotypes. An inhibitor of the Erk mitogen-activated protein (MAP) kinase pathway partially inhibited bufalin induction of VDR target gene expression. 1,25(OH)(2)D(3) treatment induced transient nuclear expression of VDR in HL60 cells. Interestingly, bufalin enhanced 1,25(OH)(2)D(3)-induced nuclear VDR expression. The MAP kinase pathway inhibitor increased nuclear VDR expression induced by 1,25(OH)(2)D(3) and did not change that by 1,25(OH)(2)D(3) plus bufalin. A proteasome inhibitor also enhanced 1,25(OH)(2)D(3)-induced CYP24A1 expression and nuclear VDR expression. Bufalin-induced nuclear VDR expression was associated with histone acetylation and VDR recruitment to the CYP24A1 promoter in HL60 cells. Thus, the Na(+),K(+)-ATPase inhibitor bufalin modulates VDR function through several mechanisms, including Erk MAP kinase activation and increased nuclear VDR expression.
Collapse
Affiliation(s)
- Yusuke Amano
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|