2
|
Pallarès V, Unzueta U, Falgàs A, Aviñó A, Núñez Y, García-León A, Sánchez-García L, Serna N, Gallardo A, Alba-Castellón L, Álamo P, Sierra J, Cedó L, Eritja R, Villaverde A, Vázquez E, Casanova I, Mangues R. A multivalent Ara-C-prodrug nanoconjugate achieves selective ablation of leukemic cells in an acute myeloid leukemia mouse model. Biomaterials 2021; 280:121258. [PMID: 34847435 DOI: 10.1016/j.biomaterials.2021.121258] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/22/2021] [Accepted: 11/13/2021] [Indexed: 11/02/2022]
Abstract
Current therapy in acute myeloid leukemia (AML) is based on chemotherapeutic drugs administered at high doses, lacking targeting selectivity and displaying poor therapeutic index because of severe adverse effects. Here, we develop a novel nanoconjugate that combines a self-assembled, multivalent protein nanoparticle, targeting the CXCR4 receptor, with an Oligo-Ara-C prodrug, a pentameric form of Ara-C, to highly increase the delivered payload to target cells. This 13.4 nm T22-GFP-H6-Ara-C nanoconjugate selectively eliminates CXCR4+ AML cells, which are protected by its anchoring to the bone marrow (BM) niche, being involved in AML progression and chemotherapy resistance. This nanoconjugate shows CXCR4-dependent internalization and antineoplastic activity in CXCR4+ AML cells in vitro. Moreover, repeated T22-GFP-H6-Ara-C administration selectively eliminates CXCR4+ leukemic cells in BM, spleen and liver. The leukemic dissemination blockage induced by T22-GFP-H6-Ara-C is significantly more potent than buffer or Oligo-Ara-C-treated mice, showing no associated on-target or off-target toxicity and, therefore, reaching a highly therapeutic window. In conclusion, T22-GFP-H6-Ara-C exploits its 11 ligands-multivalency to enhance target selectivity, while the Oligo-Ara-C prodrug multimeric form increases 5-fold its payload. This feature combination offers an alternative nanomedicine with higher activity and greater tolerability than current intensive or non-intensive chemotherapy for AML patients.
Collapse
Affiliation(s)
- Victor Pallarès
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona, 08916, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain
| | - Ugutz Unzueta
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona, 08916, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain; Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Aïda Falgàs
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona, 08916, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain
| | - Anna Aviñó
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain; Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Barcelona, 08034, Spain
| | - Yáiza Núñez
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona, 08916, Spain
| | - Annabel García-León
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona, 08916, Spain
| | - Laura Sánchez-García
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain; Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain; Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Naroa Serna
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain; Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain; Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Alberto Gallardo
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, 08041, Spain; Department of Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona, 08025, Spain
| | - Lorena Alba-Castellón
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona, 08916, Spain
| | - Patricia Álamo
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona, 08916, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain
| | - Jorge Sierra
- Josep Carreras Leukaemia Research Institute, Barcelona, 08916, Spain; Department of Hematology, Hospital de la Santa Creu i Sant Pau, Barcelona, 08025, Spain
| | - Lídia Cedó
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, 08041, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, 28029, Spain
| | - Ramon Eritja
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain; Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Barcelona, 08034, Spain
| | - Antonio Villaverde
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain; Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain; Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Esther Vázquez
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain; Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain; Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.
| | - Isolda Casanova
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona, 08916, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain.
| | - Ramon Mangues
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona, 08916, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain.
| |
Collapse
|
3
|
Calgarotto AK, Longhini AL, Pericole de Souza FV, Duarte ASS, Ferro KP, Santos I, Maso V, Olalla Saad ST, Torello CO. Immunomodulatory Effect of Green Tea Treatment in Combination with Low-dose Chemotherapy in Elderly Acute Myeloid Leukemia Patients with Myelodysplasia-related Changes. Integr Cancer Ther 2021; 20:15347354211002647. [PMID: 33754891 PMCID: PMC7995304 DOI: 10.1177/15347354211002647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Green tea (GT) treatment was evaluated for its effect on the immune and antineoplastic response of elderly acute myeloid leukemia patients with myelodysplasia-related changes (AML-MRC) who are ineligible for aggressive chemotherapy and bone marrow transplants. The eligible patients enrolled in the study (n = 10) received oral doses of GT extract (1000 mg/day) alone or combined with low-dose cytarabine chemotherapy for at least 6 months and/or until progression. Bone marrow (BM) and peripheral blood (PB) were evaluated monthly. Median survival was increased as compared to the control cohort, though not statistically different. Interestingly, improvements in the immunological profile of patients were found. After 30 days, an activated and cytotoxic phenotype was detected: GT increased total and naïve/effector CD8+ T cells, perforin+/granzyme B+ natural killer cells, monocytes, and classical monocytes with increased reactive oxygen species (ROS) production. A reduction in the immunosuppressive profile was also observed: GT reduced TGF-β and IL-4 expression, and decreased regulatory T cell and CXCR4+ regulatory T cell frequencies. ROS levels and CXCR4 expression were reduced in bone marrow CD34+ cells, as well as nuclear factor erythroid 2–related factor 2 (NRF2) and hypoxia-inducible factor 1α (HIF-1α) expression in biopsies. Immune modulation induced by GT appears to occur, regardless of tumor burden, as soon as 30 days after intake and is maintained for up to 180 days, even in the presence of low-dose chemotherapy. This pilot study highlights that GT extracts are safe and could improve the immune system of elderly AML-MRC patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Irene Santos
- University of Campinas, Campinas, São Paulo, Brazil
| | - Victor Maso
- University of Campinas, Campinas, São Paulo, Brazil
| | | | | |
Collapse
|
4
|
Walter RB, Laszlo GS, Alonzo TA, Gerbing RB, Levy S, Fitzgibbon MP, Gudgeon CJ, Ries RE, Harrington KH, Raimondi SC, Hirsch BA, Gamis AS, McIntosh MW, Meshinchi S. Significance of expression of ITGA5 and its splice variants in acute myeloid leukemia: a report from the Children's Oncology Group. Am J Hematol 2013; 88:694-702. [PMID: 23686445 PMCID: PMC3757130 DOI: 10.1002/ajh.23486] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 12/25/2022]
Abstract
Acute myeloid leukemia (AML) encompasses a heterogeneous group of diseases, and novel biomarkers for risk refinement and stratification are needed to optimize patient care. To identify novel risk factors, we performed transcriptome sequencing on 68 diagnostic AML samples and identified 2 transcript variants (-E2 and -E2/3) of the α-subunit (ITGA5) of the very late antigen-5 integrin. We then quantified expression of ITGA5 and these splice variants in specimens from participants of the AAML03P1 trial. We found no association between ITGA5 expression and clinical outcome. In contrast, patients with the highest relative expression (Q4) of the -E2/3 ITGA5 splice variant less likely had low-risk disease than Q1-3 patients (21% vs. 38%, P = 0.027). Q4 patients had worse response to chemotherapy with a higher proportion having persistent minimal residual disease (50% vs. 23%, P = 0.003) and inferior overall survival (at 5 years: 48% vs. 67%, P = 0.015); the latter association was limited to low-risk patients (Q4 vs. Q1-3: 56% vs. 85%, P = 0.043) and was not seen in standard-risk (51% vs. 60%, P = 0.340) or high-risk (33% vs. 38%, P = 0.952) patients. Our exploratory studies indicate that transcriptome sequencing is useful for biomarker discovery, as exemplified by the identification of ITGA5 -E2/3 splice variant as potential novel adverse prognostic marker for low-risk AML that, if confirmed, could serve to further risk-stratify this patient subset.
Collapse
MESH Headings
- Adult
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Child
- Child, Preschool
- Disease-Free Survival
- Female
- Gene Expression Regulation, Leukemic/genetics
- Humans
- Infant
- Infant, Newborn
- Integrin alpha5/biosynthesis
- Integrin alpha5/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Male
- RNA Splicing/genetics
- Risk Factors
- Survival Rate
- Transcriptome/genetics
Collapse
Affiliation(s)
- Roland B. Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - George S. Laszlo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Todd A. Alonzo
- Department of Biostatistics, University of Southern California, Los Angeles, CA, USA
- Children's Oncology Group, Arcadia, CA, USA
| | | | - Shawn Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Matthew P. Fitzgibbon
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Chelsea J. Gudgeon
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rhonda E. Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Susana C. Raimondi
- Children's Oncology Group, Arcadia, CA, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Betsy A. Hirsch
- Children's Oncology Group, Arcadia, CA, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota Cancer Center, Minneapolis, MN, USA
| | - Alan S. Gamis
- Children's Oncology Group, Arcadia, CA, USA
- Division of Hematology-Oncology, Children's Mercy Hospitals and Clinics, Kansas City, MO, USA
| | - Martin W. McIntosh
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Children's Oncology Group, Arcadia, CA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Schauer IG, Rowley DR. The functional role of reactive stroma in benign prostatic hyperplasia. Differentiation 2011; 82:200-10. [PMID: 21664759 DOI: 10.1016/j.diff.2011.05.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/03/2011] [Accepted: 05/16/2011] [Indexed: 12/19/2022]
Abstract
The human prostate gland is one of the only internal organs that continue to enlarge throughout adulthood. The specific mechanisms that regulate this growth, as well as the pathological changes leading to the phenotype observed in the disease benign prostatic hyperplasia (BPH), are essentially unknown. Recent studies and their associated findings have made clear that many complex alterations occur, involving persistent and chronic inflammation, circulating hormonal level deregulation, and aberrant wound repair processes. BPH has been etiologically characterized as a progressive, albeit discontinuous, hyperplasia of both the glandular epithelial and the stromal cell compartments coordinately yielding an expansion of the prostate gland and clinical symptoms. Interestingly, the inflammatory and repair responses observed in BPH are also key components of general wound repair in post-natal tissues. These responses include altered expression of chemokines, cytokines, matrix remodeling factors, chronic inflammatory processes, altered immune surveillance and recognition, as well as the formation of a prototypical 'reactive' stroma, which is similar to that observed across various fibroplasias and malignancies of a variety of tissue sites. Stromal tissue, both embryonic mesenchyme and adult reactive stroma myofibroblasts, has been shown to exert potent and functional regulatory control over epithelial proliferation and differentiation as well as immunoresponsive modulation. Thus, the functional biology of a reactive stroma, within the context of an adult disease typified by epithelial and stromal aberrant hyperplasia, is critical to understand within the context of prostate disease and beyond. The mechanisms that regulate reactive stroma biology in BPH represent targets of opportunity for new therapeutic approaches that may extend to other tissue contexts. Accordingly, this review seeks to address the dissection of important factors, signaling pathways, genes, and other regulatory components that mediate the interplay between epithelium and stromal responses in BPH.
Collapse
Affiliation(s)
- Isaiah G Schauer
- Department of Molecular and Cellular Biology, One Baylor Plaza, Jewish Research Institute, Baylor College of Medicine, 325D, mailstop BCM130, Houston, TX 77030, USA.
| | | |
Collapse
|