1
|
Adetutu A, Owoade AO, Adegbola PI. Inhibitory effects of ethyl acetate and butanol fractions from Morinda lucida benth on benzene-induced leukemia in mice. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
2
|
Synergic Crosstalk between Inflammation, Oxidative Stress, and Genomic Alterations in BCR-ABL-Negative Myeloproliferative Neoplasm. Antioxidants (Basel) 2020; 9:antiox9111037. [PMID: 33114087 PMCID: PMC7690801 DOI: 10.3390/antiox9111037] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/06/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) have recently been revealed to be related to chronic inflammation, oxidative stress, and the accumulation of reactive oxygen species. It has been proposed that MPNs represent a human inflammation model for tumor advancement, in which long-lasting inflammation serves as the driving element from early tumor stage (over polycythemia vera) to the later myelofibrotic cancer stage. It has been theorized that the starting event for acquired stem cell alteration may occur after a chronic inflammation stimulus with consequent myelopoietic drive, producing a genetic stem cell insult. When this occurs, the clone itself constantly produces inflammatory components in the bone marrow; these elements further cause clonal expansion. In BCR-ABL1-negative MPNs, the driver mutations include JAK 2, MPL, and CALR. Transcriptomic studies of hematopoietic stem cells from subjects with driver mutations have demonstrated the upregulation of inflammation-related genes capable of provoking the development of an inflammatory state. The possibility of acting on the inflammatory state as a therapeutic approach in MPNs appears promising, in which an intervention operating on the pathways that control the synthesis of cytokines and oxidative stress could be effective in reducing the possibility of leukemic progression and onset of complications.
Collapse
|
3
|
Udensi UK, Tchounwou PB. Dual effect of oxidative stress on leukemia cancer induction and treatment. J Exp Clin Cancer Res 2014; 33:106. [PMID: 25519934 PMCID: PMC4320640 DOI: 10.1186/s13046-014-0106-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/01/2014] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress (OS) has been characterized by an imbalance between the production of reactive oxygen species (ROS) and a biological system's ability to repair oxidative damage or to neutralize the reactive intermediates including peroxides and free radicals. High ROS production has been associated with significant decrease in antioxidant defense mechanisms leading to protein, lipid and DNA damage and subsequent disruption of cellular functions. In humans, OS has been reported to play a role in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Huntington's disease, Lou Gehrig's disease, multiple sclerosis and Parkinson's disease, as well as atherosclerosis, autism, cancer, heart failure, and myocardial infarction. Although OS has been linked to the etiology and development of chronic diseases, many chemotherapeutic drugs have been shown to exert their biologic activity through induction of OS in affected cells. This review highlights the controversial role of OS in the development and progression of leukemia cancer and the therapeutic application of increased OS and antioxidant approaches to the treatment of leukemia patients.
Collapse
Affiliation(s)
- Udensi K Udensi
- NIH/NIMHD RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, MS, 39217, USA.
| | - Paul B Tchounwou
- NIH/NIMHD RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, MS, 39217, USA.
| |
Collapse
|
4
|
Hasselbalch HC, Thomassen M, Hasselbalch Riley C, Kjær L, Stauffer Larsen T, Jensen MK, Bjerrum OW, Kruse TA, Skov V. Whole blood transcriptional profiling reveals deregulation of oxidative and antioxidative defence genes in myelofibrosis and related neoplasms. Potential implications of downregulation of Nrf2 for genomic instability and disease progression. PLoS One 2014; 9:e112786. [PMID: 25397683 PMCID: PMC4232509 DOI: 10.1371/journal.pone.0112786] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 10/15/2014] [Indexed: 01/16/2023] Open
Abstract
The Philadelphia-negative chronic myeloproliferative neoplasms - essential thrombocythemia (ET), polycythemia vera (PV), and myelofibrosis (MF) (MPNs) - have recently been shown to be associated with chronic inflammation, oxidative stress and accumulation of reactive oxygen species (ROS). Using whole blood transcriptional profiling, we report that several oxidative stress and anti-oxidative stress genes are significantly deregulated in MPNs. Among the twenty most up- and downregulated genes, ATOX1, DEFB122, GPX8, PRDX2, PRDX6, PTGS1, and SEPP1 were progressively upregulated from ET over PV to PMF, whereas AKR1B1, CYBA, SIRT2, TTN, and UCP2 were progressively downregulated in ET, PV and PMF (all FDR <0.05). The gene Nrf2, encoding the transcription factor nuclear factor erythroid 2-related factor 2 (NFE2L2 or Nrf2) was significantly downregulated in all MPNs. Nrf2 has a key role in the regulation of the oxidative stress response and modulates both migration and retention of hematopoietic stem cells (HSCs) in their niche. The patogenetic importance of Nrf2 depletion in the context of expansion of the hematopoietic progenitor pool in MPNs is discussed with particular focus upon the implications of concomitant downregulation of Nrf2 and CXCR4 for stem cell mobilization.
Collapse
Affiliation(s)
- Hans Carl Hasselbalch
- Department of Hematology, Roskilde Hospital, University of Copenhagen, Roskilde, Denmark
- * E-mail:
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | - Lasse Kjær
- Department of Hematology, Roskilde Hospital, University of Copenhagen, Roskilde, Denmark
| | | | - Morten K. Jensen
- Department of Hematology, Roskilde Hospital, University of Copenhagen, Roskilde, Denmark
| | - Ole Weis Bjerrum
- Department of Hematology L, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Torben A. Kruse
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Vibe Skov
- Department of Hematology, Roskilde Hospital, University of Copenhagen, Roskilde, Denmark
| |
Collapse
|
5
|
Chronic inflammation as a promotor of mutagenesis in essential thrombocythemia, polycythemia vera and myelofibrosis. A human inflammation model for cancer development? Leuk Res 2012; 37:214-20. [PMID: 23174192 DOI: 10.1016/j.leukres.2012.10.020] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 08/11/2012] [Accepted: 10/24/2012] [Indexed: 12/27/2022]
Abstract
The Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) are acquired stem cell neoplasms, in which a stem cell lesion induces an autonomous proliferative advantage. In addition to the JAK2V617 mutation several other mutations have been described. Recently chronic inflammation has been proposed as a trigger and driver of clonal evolution in MPNs. Herein, it is hypothesized that sustained inflammation may elicit the stem cell insult by inducing a state of chronic oxidative stress with elevated levels of reactive oxygen species (ROS) in the bone marrow, thereby creating a high-risk microenvironment for induction of mutations due to the persistent inflammation-induced oxidative damage to DNA in hematopoietic cells. Alterations in the epigenome induced by the chronic inflammatory drive may likely elicit a "epigenetic switch" promoting persistent inflammation. The perspectives of chronic inflammation as the driver of mutagenesis in MPNs are discussed, including early intervention with interferon-alpha2 and potent anti-inflammatory agents (e.g. JAK1-2 inhibitors, histone deacetylase inhibitors, DNA-hypomethylators and statins) to disrupt the self-perpetuating chronic inflammation state and accordingly eliminating a potential trigger of clonal evolution and disease progression with myelofibrotic and leukemic transformation.
Collapse
|
6
|
Meta-analysis of heterogeneous Down Syndrome data reveals consistent genome-wide dosage effects related to neurological processes. BMC Genomics 2011; 12:229. [PMID: 21569303 PMCID: PMC3110572 DOI: 10.1186/1471-2164-12-229] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 05/11/2011] [Indexed: 01/21/2023] Open
Abstract
Background Down syndrome (DS; trisomy 21) is the most common genetic cause of mental retardation in the human population and key molecular networks dysregulated in DS are still unknown. Many different experimental techniques have been applied to analyse the effects of dosage imbalance at the molecular and phenotypical level, however, currently no integrative approach exists that attempts to extract the common information. Results We have performed a statistical meta-analysis from 45 heterogeneous publicly available DS data sets in order to identify consistent dosage effects from these studies. We identified 324 genes with significant genome-wide dosage effects, including well investigated genes like SOD1, APP, RUNX1 and DYRK1A as well as a large proportion of novel genes (N = 62). Furthermore, we characterized these genes using gene ontology, molecular interactions and promoter sequence analysis. In order to judge relevance of the 324 genes for more general cerebral pathologies we used independent publicly available microarry data from brain studies not related with DS and identified a subset of 79 genes with potential impact for neurocognitive processes. All results have been made available through a web server under http://ds-geneminer.molgen.mpg.de/. Conclusions Our study represents a comprehensive integrative analysis of heterogeneous data including genome-wide transcript levels in the domain of trisomy 21. The detected dosage effects build a resource for further studies of DS pathology and the development of new therapies.
Collapse
|
7
|
Zhou FL, Zhang WG, Wei YC, Meng S, Bai GG, Wang BY, Yang HY, Tian W, Meng X, Zhang H, Chen SP. Involvement of oxidative stress in the relapse of acute myeloid leukemia. J Biol Chem 2010; 285:15010-15015. [PMID: 20233720 DOI: 10.1074/jbc.m110.103713] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aims of the present study were to determine the level of oxidative stress and the salient factors leading to the relapse of acute myeloid leukemia (AML). Oxidative stress-related parameters and the expressions of specific genes were monitored in 102 cases of AML during a pretreatment period from a primary status to a relapse status. In addition, age-matched healthy subjects were classified as controls. The activities of adenosine deaminase and xanthine oxidase were higher in the relapse condition, whereas those of glutathione peroxidase, monoamine oxidase, and superoxide dismutase, and the total antioxidant capacity (T-AOC) were lower in the primary condition and in controls. Of particular note, levels of advanced oxidation protein products, malondialdehyde, and 8-hydroxydeoxyguanosine were also significantly higher in relapse patients. Furthermore, real-time PCR with SYBR Green revealed that the expression levels of human thioredoxin (TRX) and indoleamine 2,3-dioxygenase were increased in relapse patients. Pearson correlation analysis revealed that the T-AOC was positively correlated with GSH but negatively correlated with 8-OHdG, TRX, and indoleamine 2,3-dioxygenase. Linear regression showed that a low T-AOC and up-regulated TRX expression were the independent factors correlated with relapse. A strong association between oxidative stress and the incidence of disease relapse was observed, which has potential prognosis implications. These results indicate that oxidative stress is a crucial feature of AML and probably affects the development and relapse of AML.
Collapse
Affiliation(s)
- Fu-Ling Zhou
- Department of Clinical Hematology, the Affiliated No. 2 Hospital, Xi'an JiaoTong University, West Five Road, No. 157, Xi'an 710004.
| | - Wang-Gang Zhang
- Department of Clinical Hematology, the Affiliated No. 2 Hospital, Xi'an JiaoTong University, West Five Road, No. 157, Xi'an 710004
| | - Yong-Chang Wei
- Department of Clinical Oncology, the Affiliated No. 1 Hospital, Xi'an JiaoTong University, Jian-kang Road, No. 1, Xi'an 710061
| | - Shan Meng
- Department of Clinical Hematology, the Affiliated No. 2 Hospital, Xi'an JiaoTong University, West Five Road, No. 157, Xi'an 710004
| | - Gai-Gai Bai
- Department of Clinical Hematology, the Affiliated No. 2 Hospital, Xi'an JiaoTong University, West Five Road, No. 157, Xi'an 710004
| | - Bai-Yan Wang
- Shanghai Institute of Hematology, Rui-jin Hospital, School of Medicine, Shanghai Jiao Tong University, 197 Rui Jin Er Road, Shanghai 200025, China
| | - Hui-Yun Yang
- Department of Clinical Hematology, the Affiliated No. 2 Hospital, Xi'an JiaoTong University, West Five Road, No. 157, Xi'an 710004
| | - Wei Tian
- Department of Clinical Hematology, the Affiliated No. 2 Hospital, Xi'an JiaoTong University, West Five Road, No. 157, Xi'an 710004
| | - Xin Meng
- Department of Clinical Hematology, the Affiliated No. 2 Hospital, Xi'an JiaoTong University, West Five Road, No. 157, Xi'an 710004
| | - Hui Zhang
- Department of Clinical Hematology, the Affiliated No. 2 Hospital, Xi'an JiaoTong University, West Five Road, No. 157, Xi'an 710004
| | - She-Ping Chen
- Department of Clinical Hematology, the Affiliated No. 2 Hospital, Xi'an JiaoTong University, West Five Road, No. 157, Xi'an 710004
| |
Collapse
|